

PROFESSIONAL

WORDPRESS® PLUGIN DEVELOPMENT

FOREWORD . xxi

INTRODUCTION . xxiii

CHAPTER 1 An Introduction to Plugins . 1

CHAPTER 2 Plugin Foundation . 11

CHAPTER 3 Hooks . 29

CHAPTER 4 Integrating in WordPress . 59

CHAPTER 5 Internationalization . 97

CHAPTER 6 Plugin Security . 117

CHAPTER 7 Plugin Settings . 163

CHAPTER 8 Users . 197

CHAPTER 9 HTTP API . 237

CHAPTER 10 The Shortcode API . 271

CHAPTER 11 Extending Posts: Metadata, Custom Post Types,

and Taxonomies . 299

CHAPTER 12 JavaScript and Ajax in WordPress . 333

CHAPTER 13 Cron . 375

CHAPTER 14 The Rewrite API . 403

CHAPTER 15 Multisite . 425

CHAPTER 16 Debugging and Optimizing . 463

CHAPTER 17 Marketing Your Plugin . 479

CHAPTER 18 The Developer Toolbox . 497

INDEX . 511

PROFESSIONAL

WordPress® Plugin Development

Brad Williams
Ozh Richard

Justin Tadlock

Professional WordPress® Plugin Development

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-91622-3
ISBN: 978-1-118-07530-2 (ebk)
ISBN: 978-1-118-07532-6 (ebk)
ISBN: 978-1-118-07531-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011920897

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. WordPress is a registered trademark of Automattic, Inc. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product
or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

 To my Father, Robert “ Basket Bob ” Williams, for

inspiring me to become the man I am today.

 — Brad Williams

 To my wife Ariane for her support while I was

escaping household chores, and to my kids Oscar

and Cyrus who ’ ll be WordPress hackers in 10 years.

 — Ozh Richard

 To my family for allowing me to explore the

online world as a career path and the WordPress

community for inviting me in.

 — Justin Tadlock

CREDITS

 EXECUTIVE EDITOR

Carol Long

PROJECT EDITOR

Kelly Talbot

TECHNICAL EDITORS

Doug Vann

Andrew Nacin

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Apostrophe Editing Services

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Jen Larsen, Word One New York

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Michael E. Trent

COVER PHOTO

© pagadesign/istockphoto.com

 ABOUT THE AUTHORS

 BRAD WILLIAMS is the CEO and co - founder of WebDevStudios.com. He is also a co - host on the
SitePoint podcast and the co - author of Professional WordPress . Brad has been developing websites
for more than 14 years, including the last 4 where he has focused on open - source technologies like
WordPress. Brad has given presentations at various WordCamps across the country, is the orga-
nizer for the New Jersey and Philadelphia WordPress Meetups and WordCamp Philly. In 2010 Brad
founded Pluginize.com, a company dedicated to building custom WordPress plugins.

 OZH RICHARD is a web developer who started to use WordPress at version 1.0.1, published his fi rst
WordPress-powered website in May 2004, and released his fi rst plugin three months later. He has
since developed several popular plugins, won an Annual WordPress Plugin Competition, and is now
an offi cial judge. When not coding WordPress plugins or sharing tutorials, Ozh contributes to other
Open Source projects such as YOURLS, a self - hosted URL shortener, or plays Quake. You can fi nd
Ozh online at http://ozh.org/ .

 JUSTIN TADLOCK is a Web developer and designer who coded his fi rst Web page in 2003 at the
age of 18, only months after getting his fi rst computer. He found WordPress in 2005 and has
been working with and contributing to the platform ever since. He has developed many popular
WordPress plugins and themes while exploring several business paths using the open - source
platform.

 ACKNOWLEDGMENTS

 THANK YOU to the love of my life, April, for your endless support, friendship, and continuing to
put up with my nerdy ways. Thank you to my awesome nieces, Indiana Brooke and Austin
Margaret. Thank you Carol Long for believing in this book idea and helping make it a reality.
To Ozh and Justin, two amazing co - authors, your knowledge of WordPress is unmatched, and
this book wouldn ’ t have been what it is without you both. Thank you to the entire WordPress
community for your support, friendships, motivation, and guidance. Thank you fi zzypop for
making WordCamp after parties the stuff of legend. Last but not least thank you to my ridiculous
zoo: Lecter, Clarice, and Squeaks the Cat (aka Kitty Galore). Your smiling faces and wiggly butts
always put a smile on my face.

 — Brad Williams

 IT ’ S BEEN A LONG TIME in the WordPress community since I fi rst started to dissect the few plugins
that began to pop like daisies in 2004 and tried to understand how things worked. To all the coders
who released the code that taught me the innards of WordPress, I can ’ t express how much I owe you.
To all the members of the WordPress community who don ’ t write code but foster the creativity and
water our community, thank you for your invaluable dedication. To Brad, who sent me that crazy
proposal about a plugin book, I hope I ’ ll cross the oceans one day to have a few beers with you. To
Ronnie James Dio, Tom Araya, Bruce Dickinson, Blaze Bayley, Lemmy Kilmister, Dave Mustaine,
Rob Zombie, Till Lindemann, and Mike Muir, whose gentle voices have lulled me and inspired me
while I was writing late at night.

 — Ozh Richard

 THE WORDPRESS COMMUNITY took me in as a lost kid who was trying to fi gure out life and
presented me with opportunities that I ’ d never dreamed possible. A simple “ thank you ” is an
understatement. To my plugin and theme users, you continue to inspire me and keep my skills sharp
with your invaluable feedback and loyalty. To Brad, thank you for that oddly random email about
writing a plugin book. To Ozh, thank you for coding all those cool plugins I learned from before
becoming a developer myself. To Granny, thank you for allowing me to skip several dinners to work
on this book. To my family and friends, thank you for supporting me and showing superhuman
patience during hour - long conversations (i.e., crazed rants) about plugin development. Most
importantly, to my father, who knows nothing about Web development but taught me everything
about being successful and continues to teach me today.

 — Justin Tadlock

CONTENTS

FOREWORD xxi

INTRODUCTION xxiii

CHAPTER 1: AN INTRODUCTION TO PLUGINS 1

What Is a Plugin? 1

How Plugins Interact with WordPress 2

When Are Plugins Loaded? 3

Available Plugins 3

Offi cial Plugin Directory 3

Popular Plugin Examples 4

Popular Plugin Tags 4

Advantages of Plugins 5

Not Modifying Core 5

Why Reinvent the Wheel 5

Separating Plugins and Themes 6

Easy Updates 6

Easier to Share and Reuse 7

Plugin Sandbox 7

Plugin Community 7

Installing and Managing Plugins 7

Installing a Plugin 7

Managing Plugins 8

Editing Plugins 8

Plugin Directories 8

Types of Plugins 9

Testing Plugin Functionality 10

Summary 10

CHAPTER 2: PLUGIN FOUNDATION 11

Creating a Plugin File 11

Naming Your Plugin 11

Using a Folder 12

Sanity Practices 12

Prefi x Everything 12

File Organization 13

Folder Structure 13

CONTENTS

x

Header Requirements 14

Creating the Header 14

Plugin License 15

Determining Paths 15

Plugin Paths 15

Local Paths 16

URL Paths 17

Activate/Deactivate Functions 18

Plugin Activation Function 18

Create Default Settings on Activate 19

Plugin Deactivation Function 19

Deactivate Is Not Uninstall 20

Uninstall Methods 20

Why Uninstall Is Necessary 20

Uninstall.php 21

Uninstall Hook 21

Coding Standards 22

Document Your Code 23

Naming Variables, Functions, and Files 23

Single and Double Quotes 24

Indentation 24

Brace Style 25

Space Usage 25

Shorthand PHP 26

SQL Statements 26

Plugin Development Checklist 26

Summary 27

CHAPTER 3: HOOKS 29

Actions 30

What Is an Action? 31

Action Hook Functions 32

Commonly Used Action Hooks 36

Filters 39

What Is a Filter? 40

Filter Hook Functions 41

Quick Return Functions 46

Commonly Used Filter Hooks 47

Using Hooks from Within a Class 51

Creating Custom Hooks 52

Benefi ts of Creating Custom Hooks 53

CONTENTS

xi

Custom Action Hook Example 53

Custom Filter Hook Example 54

How to Find Hooks 55

Searching for Hooks in the Core Code 56

Variable Hooks 56

Hook Reference Lists 56

Summary 57

CHAPTER 4: INTEGRATING IN WORDPRESS 59

Adding Menus and Submenus 59

Creating a Top-Level Menu 60

Adding a Submenu 61

Adding a Menu Item to an Existing Menu 62

Creating Widgets 63

Creating a Widget 63

Advanced Widget 68

Creating Dashboard Widgets 74

Creating a Dashboard Widget with Options 75

Meta Boxes 79

Adding a Custom Meta Box 79

Saving Meta Box Data 80

Advanced Meta Box 84

Keeping It Consistent 90

Using the WordPress UI 90

Headings 90

Icons 91

Messages 91

Buttons 92

Links 93

Form Fields 93

Tables 94

Pagination 95

Summary 96

CHAPTER 5: INTERNATIONALIZATION 97

Internationalization and Localization 97

Why Internationalize? 98

Understanding Internationalization in Professional Work 98

Getting Your Plugin Ready for Translation 99

Echoing and Returning Strings 99

CONTENTS

xii

Using Placeholders 108

Internationalizing JavaScript 110

Creating Translation Files 113

The MO and PO Files 113

Translation Tools 113

How to Create a POT File 114

Where to Store Translation Files 115

Summary 115

CHAPTER 6: PLUGIN SECURITY 117

Securing Your Plugin 117

What Securing Your Plugin Is 118

What Securing Your Plugin Is Not 118

User Permissions 118

How to Check current_user_can() 118

Do Not Check Too Early 119

Nonces 120

Authority Versus Intention 120

What Is a Nonce? 121

How to Create and Verify Nonces 122

Nonces in Ajax Scripts 127

Data Validation and Sanitization 127

The Need for Data Validation and Sanitization 127

Good Practice: Identifying Potentially Tainted Data 129

Validating or Sanitizing Input? 130

Validating and Sanitizing Cookbook 131

Formatting SQL Statements 149

The $wpdb Object 149

Why wpdb Methods Are Superior 150

All-in-One Methods 151

Common Methods 153

Protecting Queries Against SQL Injections 157

Miscellaneous wpdb Methods and Properties 159

Security Good Habits 160

Summary 161

CHAPTER 7: PLUGIN SETTINGS 163

The Options API 163

Saving Options 164

Saving an Array of Options 164

Retrieving Options 165

CONTENTS

xiii

Loading an Array of Options 166

Deleting Options 167

The Autoload Parameter 167

The Settings API 169

Benefi ts of the Settings API 169

Settings API Functions 169

Wrapping It Up: A Complete Plugin Management Page 174

Improving Feedback on Validation Errors 176

Adding Fields to an Existing Page 177

The Transients API 180

Saving an Expiring Option 181

Retrieving an Expiring Option 181

Deleting an Expiring Option 181

A Practical Example Using Transients 182

Technical Details 182

Transient Ideas 183

Saving Per-User Settings 183

Crafting a Plugin 183

User Metadata 183

Saving User Metadata 184

Updating User Metadata 184

Getting User Metadata 185

Deleting User Metadata 185

Getting a User’s ID 186

Adding Input Fields to a Profi le Page 186

BOJ’s Admin Lang Plugin 188

Per-User Settings: Best Practices 190

Storing Data in Custom Tables 191

Types of Data 191

WordPress’ Standard Tables 191

Creating a Custom Table 191

Updating the Structure of a Custom Table 193

dbDelta() Tips for Success 194

Accessing Your Custom Table 196

Summary 196

CHAPTER 8: USERS 197

Working with Users 198

User Functions 198

Creating, Updating, and Deleting Users 202

User Data 207

CONTENTS

xiv

User Metadata 212

Roles and Capabilities 219

What Are Roles and Capabilities? 220

Default Roles 220

Custom Roles 221

Limiting Access 221

Checking User Permissions 222

Is the User an Admin? 226

Allowing Custom Permissions 227

Customizing Roles 229

Creating a Role 229

Deleting a Role 230

Adding Capabilities to a Role 231

Removing Capabilities from a Role 232

A Custom Role and Capability Plugin 233

Summary 236

CHAPTER 9: HTTP API 237

HTTP Requests Crash Course 237

What Is an HTTP Request? 237

How to Make HTTP Requests in PHP 240

WordPress’ HTTP Functions 242

The wp_remote_ Functions 242

Advanced Confi guration and Tips 248

Practice: Reading JSON from a Remote API 255

Getting and Reading JSON 256

Your Functional Plugin 257

Practice: Sending Data to a Remote API 259

Formatting Parameters for POST Requests 259

Your Functional Plugin 260

Practice: Reading Arbitrary Content 262

Make Your Own Plugin Repository 263

How Plugin Upgrades Work in WordPress 263

Polling an Alternative API from a Plugin 264

Building the Alternative API 268

A Few Words of Caution About Self-Hosted API 269

Special Case: Fetching Remote Feeds 269

Summary 270

CHAPTER 10: THE SHORTCODE API 271

Creating Shortcodes 271

What Shortcodes Are 271

CONTENTS

xv

Register Custom Shortcodes 273

Shortcode Tips 277

Think Simplicity for the User 277

Remember the Dynamicity 280

Look Under the Hoods 281

A “bb code” for Comments Plugin 283

Shortcode Nesting Limitations 286

Integrating Google Maps 286

Accessing the Google Geocoding API 287

Storing API Results 288

Accessing the Google Maps API 290

More Shortcode Quick Ideas 295

Display Member-Only Content 295

Display Time-Limited Content 296

Obfuscate Email Addresses 296

Summary 297

CHAPTER 11: EXTENDING POSTS: METADATA,
CUSTOM POST TYPES, AND TAXONOMIES 299

Creating Custom Post Types 300

Post Type Possibilities 300

Registering a Post Type 300

Setting Post Type Labels 305

Using Custom Capabilities 306

Attaching Existing Taxonomies 308

Using Custom Post Types 309

Creating a Custom Post Type Loop 309

Retrieving Custom Post Type Content 311

Checking if a Post Type Exists 312

Post Metadata 313

Adding Post Metadata 314

Retrieving Post Metadata 315

Updating Post Metadata 316

Deleting Post Metadata 317

Creating Custom Taxonomies 318

Understanding Taxonomies 318

Registering a Custom Taxonomy 319

Assigning a Taxonomy to a Post Type 323

Using Custom Taxonomies 324

Retrieving a Taxonomy 324

Using a Taxonomy with Posts 325

Taxonomy Conditional Tags 327

CONTENTS

xvi

A Post Type and Taxonomy Plugin 329

Summary 332

CHAPTER 12: JAVASCRIPT AND AJAX IN WORDPRESS 333

jQuery–A Brief Introduction 333

Benefi ts of Using jQuery 334

jQuery Crash Course 334

Ajax 337

What Is Ajax? 338

Ajax Best Practices 341

Adding JavaScript in WordPress 341

A Proper Way to Include Scripts 341

Where to Include Scripts 348

Adding Scripts Only When Needed 350

Dynamic Scripts in WordPress 354

Ajax in WordPress 358

Ajax in WordPress: Principles 358

A Complete Example: Instant “Read More” Links 360

Another Example: Frontend Comment Deletion 367

Debugging Ajax 372

Summary 373

CHAPTER 13: CRON 375

What Is Cron? 375

How Is Cron Executed? 375

Scheduling Cron Events 376

Scheduling a Recurring Event 376

Scheduling a Single Event 379

Unscheduling an Event 381

Specifying Your Own Cron Intervals 382

Viewing Cron Events Scheduled 382

True Cron 386

Practical Use 386

Deleting Post Revisions Weekly 386

The Blog Pester Plugin 391

The Delete Comments Plugin 395

Summary 401

CHAPTER 14: THE REWRITE API 403

Why Rewrite URLs 403

Permalink Principles 404

CONTENTS

xvii

Apache’s mod_rewrite 404

URL Rewriting in WordPress 405

How WordPress Handles Queries 406

Overview of the Query Process 406

The rewrite Object 407

The query Object 407

What Plugins Can Do 408

Practical Uses 408

Rewriting a URL to Create a List of Shops 408

Creating a New Permalink Structure and Integrating

 Non-WordPress Pages 415

Adding an Endpoint and Altering Output Format 417

Adding a Custom Feed for the Latest Uploaded Images 421

Summary 423

CHAPTER 15: MULTISITE 425

Diff erences 426

WordPress Versus Multisite Network 426

Understanding Multisite Terminology 426

Advantages of Multisite 427

Enabling Multisite in WordPress 427

Multisite Functions 428

The Power of Blog ID 428

Common Functions 429

Switching and Restoring Sites 431

Network Content Shortcode Examples 434

A Network Content Widget Example 440

Creating a New Site 446

Multisite Site Options 452

Users in a Network 453

Multisite Super Admin 457

Checking the Site Owner 458

Network Stats 459

Multisite Database Schema 460

Multisite-Specifi c Tables 460

Site-Specifi c Tables 460

Summary 461

CHAPTER 16: DEBUGGING AND OPTIMIZING 463

Supporting Old Versions (Not) 463

Keeping Current with WordPress Development 464

CONTENTS

xviii

Deprecated Functions 465

Dealing with Obsolete Client Installs 466

Debugging 466

Enabling Debugging 467

Displaying Debug Messages 467

Correcting Debug Messages 468

Error Logging 472

Enabling Logging 472

Setting Log File Location 473

Understanding the Log File 473

Caching 473

Saving, Loading, and Deleting Cached Data 474

Caching Data Within a Plugin 475

Summary 477

CHAPTER 17: MARKETING YOUR PLUGIN 479

Choosing a License for Your Plugin 480

Diff erent Options 480

Why It Matters 481

Making Money While Using the GPL 482

Submitting to WordPress.org 482

Creating an Account 484

Submitting a Plugin 484

Setting Up SVN 485

Creating a readme.txt File 486

Getting Your Plugin Renowned 489

Naming Your Plugin 489

Building a Web Site 491

Creating a Page for Your Plugin 492

Announcing Your Plugin 493

Supporting Your Plugins 493

Getting Feedback 494

Getting Out of the Basement 495

Other Promotion Methods 495

Summary 496

CHAPTER 18: THE DEVELOPER TOOLBOX 497

Core as Reference 497

Inline Documentation 497

Finding Functions 499

Common Core Files 499

CONTENTS

xix

Codex 501

Searching the Codex 501

Function Reference 501

Tool Web Sites 502

PHPXref 502

Hooks Database 503

Community Resources 503

Support Forums 503

Mailing Lists 504

WordPress Chat 504

WordPress Development Updates 505

WordPress Ideas 505

Community News Sites 505

Local Events 506

Tools 507

Browser 507

Editor 507

Deploying Files with FTP, SFTP, and SSH 508

phpMyAdmin 508

Summary 509

INDEX 511

FOREWORD

STARTING OUT as a simple blogging system, over the last few years WordPress has morphed into
a fully featured and widely used content management system. It offers individuals and companies
world-wide a free and open-source alternative to closed-source and often very expensive systems.

When I say fully featured, that’s really only true because of the ability to add any functionality
needed in the form of a plugin. The core of WordPress is simple: You add in functionality with
plugins as you need it. Developing plugins allows you to stand on the shoulders of a giant: You
can showcase your specifi c area of expertise and help users benefi t while not having to deal with
parts of WordPress you don’t care or know about.

I’ve written dozens of plugins, which together have been downloaded millions of times. Doing that
has changed my life. It has helped me build out a business for myself, doing development and (SEO)
consultancy work. This is in your outreach too!

I wish that when I started developing plugins for WordPress as a hobby, some fi ve years back,
this book had been around. It would have saved me countless hours of digging through code and
half-fi nished documentation. I always ended up redoing pieces because I’d found yet another best
practice or simply an easier way of doing things.

Although this book didn’t exist yet, the authors of this book have always been a source of good
information for me while developing my plugins. Each of them is an expert in his own right;
together they are one of the best teams that could have been gathered to write this book.

WordPress makes it easy for people to have their say through words, sound, and visuals. For
those who write code, WordPress allows you to express yourself in code. And it’s simple. Anyone
can write a WordPress plugin. With this guide in hand, you can write a plugin that is true to
WordPress’ original vision: Code is Poetry.

Happy coding!

Joost de Valk
Yoast.com

 INTRODUCTION

 DEAR READER, thank you for picking up this book! You have probably heard about WordPress
already, the most popular self - hosted content management system (CMS) and blogging software in
use today. WordPress powers literally millions of Web sites on the Internet, including high profi le
sites such as TechCrunch and CNN ’ s blog. What makes WordPress so popular is that it ’ s free, open
source, and extendable beyond limits. Thanks to a powerful, architecturally sound, and easy - to - use
plugin system, you can customize how WordPress works and extend its functionalities. There are
already more than ten thousand plugins freely available in the offi cial plugin repository, but they
won ’ t suit all your needs or client requests. That ’ s where this book comes in handy!

 As of this writing, we (Brad, Ozh, and Justin), have publicly released 50 plugins, which have been
downloaded nearly one million times, and that ’ s not counting private client work. This is a precious
combined experience that we are going to leverage to teach you how to code your own plugins for
WordPress by taking a hands - on approach with practical examples and real life situations you will
encounter with your clients.

 The primary reason we wanted to write this book is to create a preeminent resource for WordPress
plugin developers. When creating plugins for WordPress, it can be a challenge to fi nd the resources
needed in a single place. Many of the online tutorials and guides are outdated and recommend
incorrect methods for plugin development. This book is one of the most extensive collections of
plugin development information to date and should be considered required reading for anyone
wanting to explore WordPress plugin development from the ground up.

 WHO THIS BOOK IS FOR

 This book is for professional Web developers who want to make WordPress work exactly how they
and their clients want. WordPress has already proven an exceptional platform for building any type
of site from simple static pages to networks of full - featured communities. Learning how to code
plugins will help you get the most out of WordPress and have a cost - effective approach to developing
per - client features.

 This book is also for the code freelancers who want to broaden their skill portfolio, understand the
inner workings of WordPress functionality, and take on WordPress gigs. Since WordPress is the
most popular software to code and power websites, it is crucial that you understand how things run
under the hood and how you can make the engine work your way. Learning how to code plugins
will be a priceless asset to add to your resume and business card.

 Finally, this book is for hobbyist PHP programmers who want to tinker with how their WordPress
blog works, discover the infi nite potential of lean and fl exible source code, and how they can
interact with the fl ow of events. The beauty of open source is that it ’ s easy to learn from and easy to
give back in turn. This book will help you take your fi rst step into a community that will welcome
your creativity and contribution.

xxiv

INTRODUCTION

 Simply put, this book is for anyone who wants to extend the way WordPress works, whether it is
for fun or profi t.

 WHAT YOU NEED TO USE THIS BOOK

 This book assumes you already have a Web server and WordPress running. For your convenience it
is preferred that your Web server runs on your localhost, as it will be easier to modify plugin fi les as
you read through the book, but an online server is also fi ne.

 Code snippets written in PHP are the backbone of this book: You should be comfortable with
reading and writing basic PHP code or referring to PHP ’ s documentation to fi ll any gaps in
knowledge about fundamental functions. Advanced PHP code tricks are explained, so you don ’ t
need to be a PHP expert.

 You will need to have rudimentary HTML knowledge to fully understand all the code. A basic
acquaintance with database and MySQL syntax will help with grasping advanced subjects. To make
the most of the chapter dedicated to JavaScript and AJAX, comprehension of JavaScript code and
jQuery syntax will be a plus.

 WHAT THIS BOOK COVERS

 As of this writing, WordPress 3.1 is around the corner and this book has been developed alongside
this version. Following the best coding practices outlined in this book and using built - in APIs are
keys to future - proof code that will not be deprecated when a newer version of WordPress is released.
We believe that every code snippet in this book will still be accurate and up - to - date for several
years, just as several plugins we coded many years ago are still completely functional today.

 HOW THIS BOOK IS STRUCTURED

 This book is, to date, one of the most powerful and comprehensive resources you can fi nd about
WordPress plugins. Advanced areas of the many WordPress APIs are covered, such as the Rewrite
APIs, cron jobs, and Custom Post Types. This book is divided into three major parts. Reading the
fi rst three chapters (Introduction, Plugin Foundations, and Hooks) is required if you are taking
your fi rst steps in the wonders of WordPress plugins. Chapters 4 through 7 will cover most common
topics in coding plugins, and understanding them will be useful when reading subsequent chapters.
The remaining chapters cover advanced APIs and functions, can be read in any order, and will
sometimes refer to other chapters for details on a particular function.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of

conventions throughout the book.

INTRODUCTION

xxv

 As for styles in the text:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show fi le names, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the
present context or to show changes from a previous code snippet.

 SOURCE CODE

 As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com . When at the site, simply locate the book ’ s title
(use the Search box or one of the title lists) and click the Download Code link on the book ’ s detail
page to obtain all the source code for the book. Code that is included on the Web site is highlighted
by the following icon:

 Listings include the fi lename in the title. If it is just a code snippet, you ’ ll fi nd the fi lename
in a code note such as this:

 Code snippet fi lename

➤

➤

➤

➤

 Boxes with a warning icon like this one hold important, not - to - be - forgotten
information that is directly relevant to the surrounding text.

 The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book ’ s ISBN is 978 - 0 - 470 - 91622 - 3.

http://www.wrox.com

xxvi

INTRODUCTION

 Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

 ERRATA

 We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book ’ s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check
the information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in
subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to email you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

 At p2p.wrox.com , you will fi nd a number of different forums that will help you, not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an email with information describing how to verify your account and com-
plete the joining process.

http://www.wrox.com

INTRODUCTION

xxvii

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

 You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

An Introduction to Plugins

 WHAT ’ S IN THIS CHAPTER?

 Understanding a plugin

 Using available WordPress APIs

 Loading order of plugins

 Finding examples of popular plugins

 Determining the separation of plugin and theme functionality

 Managing and installing plugins

 Understanding types of WordPress plugins

 WordPress is one of the most popular open source content management systems available
today. One of the primary reasons WordPress is so popular is the ease with which you can
customize WordPress through plugins. WordPress has an amazing framework in place giving
plugin developers the tools needed to extend WordPress in any way imaginable.

 Understanding how plugins work, and the tools available in WordPress, is critical knowledge
when developing professional WordPress plugins.

 WHAT IS A PLUGIN?

 A plugin in WordPress is a PHP script that extends or alters the core functionality of
WordPress. Quite simply plugins are fi les installed in WordPress to add a feature, or set
of features, to WordPress. Plugins can range in complexity from a simple social networking
plugin to an extremely elaborate e - commerce package. There is no limit to what a plugin can
do in WordPress; because of this there is no shortage of plugins available for download.

➤

➤

➤

➤

➤

➤

➤

 1

2 ❘ CHAPTER 1 AN INTRODUCTION TO PLUGINS

 How Plugins Interact with WordPress

 WordPress features many different APIs for use in your plugin. Each API, or application programming
interface, helps interact with WordPress in a different way. Following is a list of the main available
APIs in WordPress and their function:

 Plugin — Provides a set of hooks that enable plugins access to specifi c parts of WordPress.
WordPress contains two different types of hooks: Actions and Filters. The Action hook
enables you to trigger custom plugin code at specifi c points during execution. For example,
you can trigger a custom function to run after a user registers a user account in WordPress.
The Filter hook to modifi es text before adding or after retrieving from the database.

 Widgets — Create and manage widgets in your plugin. Widgets appear under the
Appearance ➪ Widgets screen and are available to add to any registered sidebar in your
theme. The API enables multiple instances of the same widget to be used throughout
your sidebars.

 Shortcode — Adds shortcode support to your plugin. A shortcode is a simple hook that enables
you to call a PHP function by adding something such as [shortcode] to a post or page.

 HTTP — Sends HTTP requests from your plugin. This API retrieves content from an
external URL or for submitting content to a URL. Currently you have fi ve different ways
to send an HTTP request. This API standardizes that process and tests each method prior to
executing. Based on your server confi guration, the API will use the appropriate method and
make the request.

 Settings — Inserts settings or a settings section for your plugin. The primary advantage to
using the Settings API is security. All settings data is scrubbed, so you do not need to worry
about cross site request forgery (CSRF) and cross site scripting (XSS) attacks when saving
plugin settings.

 Options — Stores and retrieves options in your plugin. This API features the capability
to create new options, update existing options, delete options, and retrieve any option
already defi ned.

 Dashboard Widgets — Creates admin dashboard widgets. Widgets automatically appear
on the Dashboard of WordPress and contain all standard customization features including
minimize, drag/drop, and screen options for hiding.

 Rewrite — Creates custom rewrite rules in your plugin. This API enables you to add static
end - points (/custom - page/), structure tags (%postname%), and add additional feed links
(/feed/json/).

 Transients — Creates temporary options (cached data) in your plugins. This API is similar
to the Options API, but all options are saved with an expiration time.

 Database — Accesses the WordPress database. This includes creating, updating, deleting,
and retrieving database records for use in your plugins.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 WordPress also features pluggable functions. These functions enable you
to override specifi c core functions in a plugin. For example, the wp_mail()
function is a pluggable function. You can easily defi ne this function in
your plugin and send email using SMTP rather than the default method.
All pluggable functions are defi ned in the /wp - includes/pluggable.php
Core WordPress fi le.

 You can use some predefi ned functions during specifi c plugin tasks,
such as when a plugin is activated or deactivated and even when a plugin
is uninstalled. Chapter 2, “ Plugin Foundation, ” covers these functions
in detail.

 When Are Plugins Loaded?

 Plugins are loaded early in the process when a WordPress powered web
page is called. Figure 1 - 1 shows a diagram of the standard loading process
when loading a page in WordPress:

 Figure 1 - 1 illustrates the standard process when loading a page in
WordPress. The fl ow changes slightly when loading an admin page. The
differences are minor and primarily concern what theme is loaded: admin
theme versus your web site theme.

 AVAILABLE PLUGINS

 When researching available plugins you need to know where to fi nd WordPress plugins. You can
download plugins anywhere on the Internet, but this isn ’ t always a good idea.

 FIGURE 1 - 1

 As with any software, downloading plugins from an untrusted source could
lead to malware injected and compromised plugin fi les. It ’ s best to download
plugins only from trusted web sites and offi cial sources such as the offi cial
Plugin Directory.

 Offi cial Plugin Directory

 The fi rst place to start when researching available WordPress plugins is the offi cial Plugin Directory
at WordPress.org. The Plugin Directory is located at http://wordpress.org/extend/plugins/ .
With more than 10,000 plugins available and well over 100 million plugin downloads, it ’ s easy
to see the vital role plugins play in every WordPress web site. All plugins available in the Plugin
Directory are 100% GPL and free to use for personal or commercial use.

Available Plugins ❘ 3

4 ❘ CHAPTER 1 AN INTRODUCTION TO PLUGINS

 Popular Plugin Examples

 Take a look at the fi ve most downloaded WordPress plugins available to get a sense of their diversity:

 All in One SEO Pack — Adds advanced search engine optimization functionality to
WordPress. Features include custom meta data for all content, canonical URLs, custom post
type support, and more!

 http://wordpress.org/extend/plugins/all - in - one - seo - pack/

 Google XML Sitemaps — Generates an XML sitemap of all content for submission to the
popular search engines such as Google, Bing, and Ask.com.

 http://wordpress.org/extend/plugins/google - sitemap - generator/

 Akismet — A popular comment spam fi lter for WordPress. Checks all comments against the
Akismet web service to verify whether the comment is spam.

 http://wordpress.org/extend/plugins/akismet/

 NextGEN Gallery — Adds advanced image gallery support to WordPress. You can easily
create and manage image galleries and slideshows. Galleries can be embedded in posts or
pages.

 http://wordpress.org/extend/plugins/nextgen - gallery/

 Contact Form 7 — Adds a contact form to any post or page in WordPress. Supports mul-
tiple contact forms, Akismet spam fi ltering, and CAPTCHA.

 http://wordpress.org/extend/plugins/contact - form - 7/

 As you can see, the preceding plugins can handle any task. The features added by these plugins are
universal and features that most web sites on the Internet should have.

 Popular Plugin Tags

 Now you will look at some popular tags for plugins. Plugin tags are just like blog post tags, simple
keywords that describe a plugin in the Plugin Directory. This makes it easy to search for existing
plugins by tag. Following are popular examples:

 Twitter — Everyone loves Twitter for micro - blogging and sharing links. You can fi nd an
abundance of Twitter - related plugins for WordPress.

 http://wordpress.org/extend/plugins/tags/twitter

 Google — With so many different services and APIs, Google is a popular plugin tag.
Everything from Google ads to Google maps have been integrated into a WordPress plugin.

 http://wordpress.org/extend/plugins/tags/google

 Widget — Most plugins that include a widget also use the widget tag. This is great for
viewing the many different types of widgets available for WordPress.

 http://wordpress.org/extend/plugins/tags/widget

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 Viewing popular plugin tags is a great way to get inspiration when developing new plugins
for WordPress.

 ADVANTAGES OF PLUGINS

 WordPress offers many advantages to using plugins. You need to understand the advantages
to building plugins to truly understand why you should build plugins. This can also help when
determining the need for a specifi c plugin in WordPress.

 Not Modifying Core

 One of the main advantages to plugins is the ability to modify the behavior of WordPress without
modifying any core fi les. Core fi les refer to any fi le that is a part of the default WordPress installation.

 Hacking core fi les can make it diffi cult to update WordPress when a new version is released. If you
made any modifi cations to a core fi le, that modifi cation would be overwritten when the update occurs.
Keeping WordPress up to date with the latest version is essential in keeping your web site secure.

 Modifying core fi les can also lead to an unstable web site. Different areas of WordPress rely on
other areas to function as expected. If you modify a core fi le and it no longer works as expected, it
can cause instability and quite possibly break a completely unrelated feature in WordPress.

 Why Reinvent the Wheel

 Another advantage to building plugins is the structure that already exists for your plugin. Many
of the common features have already been developed and are ready for use in your plugin. For
example, you can take advantage of the built - in user roles in WordPress. Using the user roles you
can easily restrict your code to execute only if a user is an administrator. Look at an example:

 < ?php
if (current_user_can(‘manage_options’)) {
 //any code entered here will only be executed IF
 //user is an administrator
}
? >

 As you can see it ’ s easy to verify a user has proper permissions prior to executing any code in your
plugin. You learn about user accounts and roles in Chapter 8, “ Users. ”

 As another example, look at sending an email in WordPress. Sure you could create a new function
in your plugin to send email, but why? WordPress has a handy function called wp_mail() for
sending email. Look at an example:

 < ?php
$email_to = ‘you@example.com’;
$email_subject = ‘Plugin email example’;
$email_message = ‘How do you like my new plugin?’;

wp_mail($email_to, $email_subject, $email_message);
? >

Advantages of Plugins ❘ 5

6 ❘ CHAPTER 1 AN INTRODUCTION TO PLUGINS

 As you can see sending an email in WordPress couldn ’ t be easier. Unless your plugin needs some
customized emailing functionality, you don ’ t need to re - create this function from scratch. Using this
function also ensures the widest adoption for sending emails from WordPress because you use the
built - in function.

 Using the available built - in features of WordPress can greatly reduce the time to develop a plugin.
Another advantage to not reinventing the wheel is that this approach more often than not will
allow for your plugins to work across a greater number of servers and setups, thereby maximizing
compatibility. Don ’ t reinvent the wheel with features that already exist in WordPress.

 Separating Plugins and Themes

 A plugin can take control of the rendering process; therefore, the plugin can become a “ theme. ”
Similarly a theme can have plugin functionality included. Because of this the difference between the
two can sometimes become blurred, so why not just include your plugin code directly in a theme?
This is a common question and one that can have a few different answers.

 Should themes include plugin functionality? The short answer is no. The primary reason for this is
because plugins are meant to add features and functionality to WordPress, regardless of the theme
used. This creates a nice separation between your web site design and the functionality of your web
site. The reason this separation is needed is so your theme is not directly tied to the functionality
required. WordPress is built so that you can easily change your design, or theme, at any point with
just a couple clicks. If all plugin functionality existed in your theme, and you switched themes, you
will have lost all that functionality you required.

 There is also a strong argument that certain features should be included in a theme. A common
feature most themes include is breadcrumb navigation. This feature could certainly exist in a plugin,
but being a navigation - centric feature it makes sense to include this in the theme. Search engine
optimization features are also a common feature found in themes today.

 Easy Updates

 WordPress makes it easy to update a plugin to the latest version. Every plugin installed from
the WordPress.org Plugin Directory alerts you when a new version of the plugin has been released.
Updating the plugin is as simple as clicking the update notifi cation listed just below the plugin
details on the Plugin screen.

 Plugins not installed from the Plugin Directory can also be updated using the auto - update
functionality of WordPress. The plugin author must defi ne where WordPress can download the
latest version, and it will take care of the rest. If the plugin author doesn ’ t defi ne this location,
you must manually update the plugin.

 Keeping plugins updated is an important part in keeping your web site free from security
vulnerabilities and bugs.

 Easier to Share and Reuse

 Plugins are easy to share with others. It ’ s much easier to share a plugin than tell someone to modify
specifi c lines of code in your theme or WordPress. Using plugins also makes it easy to use the same
functionality across multiple sites. If you fi nd a group of plugins that you like, you can easily install
them on every WordPress web site you create.

 Plugin Sandbox

 When you activate a broken plugin in WordPress, it won ’ t break your site. If the plugin triggers a
fatal error, WordPress automatically deactivates the plugin before it has a chance to. This fail - safe
feature makes it less risky when activating and testing out new plugins. Even if the plugin does cause
a white screen of death (error message), you can easily rename the plugin folder, and WordPress
deactivates the plugin. This makes it impossible for a rogue plugin to lock you out of your own site
because of an error.

 On the other hand, if you were to hack the WordPress core, you can most certainly cause fatal errors
that will crash your web site. This can also include making unrecoverable damage to WordPress.

 Plugin Community

 A huge community is centered around plugin development, sharing knowledge and code, and creating
wonderful plugins. Getting involved in the community is a great way to take your plugin development
skills to the next level. Chapter 18, “ The Developer Toolbox, ” covers many of these resources.

 INSTALLING AND MANAGING PLUGINS

 All plugin management in WordPress happens under the Plugins screen in the
WordPress Dashboard, as shown in Figure 1 - 2.

 The menu shown in Figure 1 - 2 is available only to administrators in WordPress,
so nonadministrators cannot see this menu. If you use the Multisite feature of
WordPress, the Plugins menu is hidden by default. You need to enable the menu
under Network Admin ➪ Settings.

 Installing a Plugin

 WordPress features three different methods for installing a new plugin. Your server setup dictates
which method is the best to use.

 The fi rst method uses the built - in auto installer. This method enables you to search the Plugin
Directory on WordPress.org directly from the admin dashboard of your WordPress web site. After
you fi nd a plugin to install, simply click the Install link, and the plugin automatically downloads
and installs.

 The second method uses the zip uploader. Zipped plugin fi les can be uploaded, extracted, and
installed by WordPress. To use this method click the Upload link at the top of the Install Plugins

 FIGURE 1 - 2

Installing and Managing Plugins ❘ 7

8 ❘ CHAPTER 1 AN INTRODUCTION TO PLUGINS

page. Click the Browser button and select the
plugin zip fi le you want to install. After you
select the plugin, click the Install Now button,
as shown in Figure 1 - 3.

 The third and fi nal method to install a plugin
in WordPress uses File Transfer Protocol
(FTP). Using FTP is simply connecting to your
web server using an FTP client and manually
uploading the plugin to your WordPress
installation. To use this method upload the uncompressed plugin folder or fi le to the wp - content/
plugins directory on your web server.

 Managing Plugins

 After you install a plugin in WordPress, you can manage it, along with all other plugins, under
the Plugins ➪ Plugins screen. Here you can fi nd a list of all plugins, active or not, available in your
WordPress installation. You can easily activate, deactivate, edit, update, and delete plugins from
this screen.

 The Plugin screen also features bulk actions for activating, deactivating, updating, and deleting
plugins. Check all the plugins you want to manage and then select the appropriate bulk action
from the drop - down menu. This process makes managing multiple plugins a breeze!

 Editing Plugins

 WordPress features a built - in plugin editor under the Plugins ➪ Editor screen. The plugin editor
enables you to view and edit the source code of any plugin installed in WordPress. Keep in mind
you can only edit the source code if the plugin fi le is writeable by the web server, otherwise you
can only view the code.

 To use the editor, select the plugin from the drop - down menu on the top - left portion of the Edit
Plugins page. The editor lists all fi les associated with the selected plugin. There is also a documentation
lookup feature making it easy to research a specifi c function ’ s purpose in the plugin you are reviewing.

 FIGURE 1 - 3

 A word of caution when using the built - in plugin editor: A browser doesn ’ t have
an Undo button. There is also no code revision history, so one bad code edit can
crash your entire site with no way to revert the changes back. It ’ s best to use the
code editor for reference only and never use it to edit your plugin fi les.

 Plugin Directories

 A lesser known fact is WordPress actually features two plugin directories. The primary plugin
directory is located under wp - content/plugins in a standard WordPress installation. The second,
lesser known, plugin directory is located under wp - content/mu - plugins . The mu - plugins

directory, which stands for Must - Use, is not auto - created by WordPress, so it must be manually
created to be used.

 The primary difference between the two is the mu - plugins directory is for plugins that are always
executed. This means any plugin included in this directory will automatically be loaded in WordPress
and across all sites in the network if you run Multi - site.

 The mu - plugins directory will not read plugins in a subfolder, so all plugins much
be individual fi les or must include additional fi les that exist in a subdirectory. Any
plugin fi les in a subfolder will be ignored unless included in the primary plugin fi le.

 Types of Plugins

 WordPress features a few different types and statuses
for plugins, as shown in Figure 1 - 4. You need to
understand the difference when administering and
creating plugins for WordPress.

 Active — Plugin is active and running in WordPress.

 Inactive — Plugin is installed but not active. No code from the plugin is executed.

 Must - Use — All plugins installed in the wp - content/mu - plugins directory. All Must - Use,
or MU, plugins are loaded automatically. The only way to deactivate an MU plugin is to
remove it completely from the directory.

 Drop - ins — Core functionality of WordPress can be replaced by Drop - in plugins. These
plugins are a specifi cally named PHP fi les located in the wp - content directory. If WordPress
detects one of these fi les, it will be auto - loaded and listed under the Drop - in fi lter on the
Plugin screen. Currently ten Drop - in plugins are available:

 advanced - cache.php — Advanced caching plugin

 db.php — Custom database class

 db - error.php — Custom database error message

 install.php — Custom installation script

 maintenance.php — Custom maintenance message

 object - cache.php — External object cache

 sunrise.php — Advanced domain mapping

 blog - deleted.php — Custom blog deleted message

 blog - inactive.php — Custom blog inactive message

 blog - suspended.php — Custom blog suspended message

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 1 - 4

Installing and Managing Plugins ❘ 9

10 ❘ CHAPTER 1 AN INTRODUCTION TO PLUGINS

 The last four drop - in plugins are specifi c to the WordPress Multisite feature. A standard WordPress
installation will have no use for these plugins.

 When developing a new plugin, determine what type of plugin you want to create before you start
the development process. Most plugins will be standard WordPress plugins, but occasionally you
might need to create a Must - Use or Drop - in specifi c plugin.

 Testing Plugin Functionality

 On occasion you may want to test some plugin functionality without actually creating a plugin to
do so. Many developers will place code directly in the wp - config.php fi le to do so. This is a bad
technique and should not be used because when the confi g fi le is parsed and loaded, WordPress is
not wholly instantiated yet.

 Instead of hacking wp - config.php , make a test.php fi le with the following code snippet and place
it in your WordPress root directory:

 < ?php
// Load the WordPress Environment
// define(‘WP_DEBUG’, true); /* uncomment for debug mode */
require(‘./wp-load.php’);
// require_once (‘./wp-admin/admin.php’); /* uncomment for is_admin() */
? >
 < pre >
 < ?php

/* test stuff here */
var_dump(is_admin());

? >
 < /pre >

 Code snippet test.php

 This is a quick way to load all of the required WordPress functions to test plugin functionality
without actually creating a plugin. As you can see wp - load.php is included at the beginning of
the fi le. You can also include wp - admin/admin.php if you want to test admin side functionality.
Once you have included the required WordPress core fi les, you want test any code that would
otherwise exist reside in your plugin. Don ’ t forget to remove your test.php fi le when you are
done testing.

 SUMMARY

 In this chapter you learned what about plugins and how they can interact with WordPress using
the available APIs. The major advantages to using plugins and why plugin functionality shouldn ’ t
always be included in a theme was discussed. Installing and managing plugins in the WordPress
admin dashboard was covered.

 Now that you understand how plugins work in WordPress, it ’ s time to create the plugin foundation!

Plugin Foundation

 WHAT ’ S IN THIS CHAPTER?

 Creating a solid plugin foundation

 Determining directory and fi le paths

 Using Activate and Deactivate functions

 Understanding available plugin uninstall methods

 Managing sanity practices and coding standards

 Understanding proper code documentation

 Using plugin development checklists

 When developing a plugin in WordPress, it ’ s essential to start with a solid plugin foundation.
Starting with a good foundation can eliminate many headaches as you develop your new
plugin. The techniques discussed in this chapter will be used throughout this book as a good
example of what to do.

 CREATING A PLUGIN FILE

 A plugin in WordPress can be a single PHP fi le or a group of fi les inside a folder. You need to
consider many things when creating a new plugin in WordPress such as the plugin name and
proper folder usage.

 Naming Your Plugin

 When choosing a name for your plugin, it ’ s good practice to consider a name based on what
your plugin actually does. For example, if you create an SEO - focused plugin, you wouldn ’ t

➤

➤

➤

➤

➤

➤

➤

 2

12 ❘ CHAPTER 2 PLUGIN FOUNDATION

want to name it Bob ’ s Plugin. Your audience would have no idea what your plugin actually does
based on the plugin name. Your plugin name should be unique to your plugin and should also be
descriptive of your plugin ’ s purpose.

 It ’ s also a good idea to search the Plugin Directory on WordPress.org (http://wordpress.org/
extend/plugins/) for similar plugins to avoid confusion. If you decide to name your plugin SEO
Gold, and a plugin named SEO Silver already exists, there might be some confusion on whether
your plugin is new or just a newer version of an old plugin. You don ’ t want the fi rst impression
of your plugin to be met with confusion. Chapter 17, “ Marketing Your Plugins, ” covers this in
more detail.

 Using a Folder

 It ’ s highly recommended to store all your plugin fi les inside a folder within the plugins directory
in WordPress. All plugins downloaded from the WordPress.org Plugin Directory are automatically
structured in subfolders. This enables your plugin to easily contain multiple fi les and any other items
you want to include, such as images. You can also include subfolders to help organize your plugin
fi les better. The folder name should be the same as the main plugin fi lename. You shouldn ’ t include
any spaces or underscores in the folder name; instead use hyphens if needed. Subfolders and the
hierarchical directory structure of the fi les are discussed further in the “ Sanity Practices ” section
of this chapter.

 SANITY PRACTICES

 Following a common set of sanity practices is a best practice for developing plugins in WordPress.
The practices described in this section should be strictly followed for any plugin you develop.
This can help eliminate many common errors in WordPress. These practices can also make the
organization of your plugins much cleaner.

 Prefi x Everything

 When building a custom plugin, it ’ s essential that you prefi x everything with a unique prefi x. This
means all plugins fi les, function names, variable names, and everything included with your plugin.
Why? Simple, one of the most common errors in plugins is using all too common names for function
and variables. For example, if you have a function named update_options() and the user installs
another plugin with the same function name, the website will break because you can ’ t have two
functions with the same name in PHP.

 A good rule of thumb is to prefi x everything with your plugin initials and your own initials. For
instance if your name is Michael Myers and your plugin is named Halloween Revenge, you would
prefi x the function as mm_hr_update_options() . There is a strong chance no other plugin in the
world exists with the same function name; therefore there is little risk of having confl icts with
other plugins.

 This is also a good rule for variable names. Don ’ t use general names when creating variables. For
instance, say your plugin creates and uses a variable called $post . That could cause unexpected

results because $post is a global variable in WordPress containing the post data. If your plugin
overwrites the data in $post and something else in WordPress expects the post data to still exist,
you might have a serious problem. Instead you can use the same prefi x method previously described
and name your variable $mm_hr_post . This is a unique variable name most likely not used in any
other plugin.

 This book prefi xes everything with boj_ (a mashup of the Authors’ initials) and myplugin_
(assuming the fi ctitious plugin is named My Plugin) like so: boj_myplugin_function_name() .

 File Organization

 Keeping your plugin fi les organized is a key step in producing a professional plugin. Generally
speaking, you should have only two fi les in your plugin folder: the primary plugin PHP fi le and
your uninstall.php fi le. For organizational reasons, store all other plugin fi les in a subdirectory.

 It is also recommended you split your plugin into several smaller fi les. One primary reason for doing
so is for performance reasons. For instance, you should group all admin interface functions in a
separate fi le. This allows you to conditionally include the admin code only when the user is viewing
the admin side of WordPress:

 < ?php
if (is_admin()) {
 // we’re in wp-admin
 require_once(dirname(__FILE__).’/includes/admin.php’);
}
? >

 The preceding example uses the is_admin() conditional statement to verify the user is in the admin
dashboard of WordPress. If so your plugin should include and process the /includes/admin.php
fi le for your plugin.

 Folder Structure

 Another important step to a professional plugin is maintaining a clean folder structure, which
pertains to keeping all similar fi les together. For example, if your plugin requires JavaScript fi les,
create a /js folder and store all the JavaScript fi les in this directory. If you have custom style sheet
fi les, create a /css folder to store all your CSS fi les. Keep all images stored in a /images folder.

 Now look at a standard folder structure for a plugin:

 /unique - plugin - name — (no spaces or special characters)

 unique - plugin - name.php — Primary plugin PHP fi le

 uninstall.php — The uninstall fi le for your plugin

 /js — Folder for JavaScript fi les

 /css — Folder for stylesheet fi les

 /includes — Folder for other PHP includes

 /images — Folder for plugin images

➤

➤

➤

➤

➤

➤

➤

Sanity Practices ❘ 13

14 ❘ CHAPTER 2 PLUGIN FOUNDATION

 As you can see, keeping your fi les organized using a clean folder structure can make it much
easier to track the fl ow of your plugin over time. It can also make it much easier for other plugin
developers to follow your logic when they view your plugin ’ s source code.

 HEADER REQUIREMENTS

 The plugin header is the only requirement for a plugin to function in WordPress. The plugin header
is a PHP comment block located at the top of your primary plugin PHP fi le. This comment block
tells WordPress that this is a valid WordPress plugin.

 Creating the Header

 Following is an example of a plugin header:

 < ?php
/*
Plugin Name: My Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A brief description of my plugin
Version: 1.0
Author: Brad Williams
Author URI: http://example.com
License: GPLv2
*/
? >

 Code snippet header - example.php

 As you can see, the plugin header is straightforward. The only required line for WordPress to
recognize your plugin is the plugin name, but it ’ s good practice to fi ll in the entire header as shown.

 The Plugin URI is a direct link to your plugin detail web page. The description is a short description
of your plugin, which displays on the Plugin screen in WordPress. The version number is the current
version of the plugin. WordPress uses the version number set here to check for new plugin updates
at WordPress.org. The next two lines are the Author and Author URI. The Author is listed on the
Plugin screen with a link to the Author URI set here. The fi nal line is the software license the plugin
is released under.

 Figure 2 - 1 shows how your plugin header is
rendered in WordPress.

 The plugin Author ’ s name, Brad Williams
in this case, will link directly to the Author
URI. The “ Visit plugin site ” text will link to the Plugin URI as defi ned in your plugin header. As
you can see, both of these links can help users of your plugin fi nd additional information about you
and your plugin.

 FIGURE 2 - 1

 Plugin License

 Below the plugin header comment block, it ’ s a good idea to include the license for your plugin.
This is not a requirement for your plugin to function, but anytime you release code to the public,
it ’ s a good idea to include a license with that code. This gives your users clear answers in how your
plugin is licensed and how they can use your code. Chapter 17, “ Marketing Your Plugins, ” covers
this topic.

 WordPress is licensed under the GNU General Public License (GPL) software license and as such
any plugin distributed for WordPress should be compatible with the GPL. Following is an example
of a standard GPL license comment block:

 < ?php
/* Copyright YEAR PLUGIN_AUTHOR_NAME (email : PLUGIN AUTHOR EMAIL)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
? >

 Code snippet license - example.php

 Simply fi ll out the year, plugin author name, and email in the preceding license code. Now place
the license code just below your plugin header. By including this software license, your plugin will
be licensed under the GPL.

 DETERMINING PATHS

 Often you need to determine fi le and folder paths within your plugins. For example, you might have
an image in your plugin folder that you want to display. Generally speaking, it isn ’ t a good idea to
hardcode a directory path in a plugin. WordPress can be confi gured to run in a million different
ways, so assuming you know the proper directory paths is a mistake. This section looks at the
proper way to determine fi le and folder paths in your WordPress plugin.

 Plugin Paths

 A common task in any plugin is referencing fi les and folders in your WordPress installation. You
can reference fi les in your code in two ways: using the local server path or by using a standard URL.

Determining Paths ❘ 15

16 ❘ CHAPTER 2 PLUGIN FOUNDATION

Think of the local server path as nothing more than the directory path on a computer. The local
server path is generally used whenever you need to include something that is local on your server.
A URL is typically used to link to something external to your server, but that doesn ’ t mean you
can ’ t link to images and such using the URL path.

 WordPress features the ability to move the wp - content directory to a different location. Because of
this you shouldn ’ t hardcode directory paths in WordPress, but rather use the available functions to
determine the correct path.

 Local Paths

 Here ’ s one common question in plugin development: What is the proper way to determine the local
path to your plugin fi les? To determine the local path to your plugin, you need to use the plugin_
dir_path() function. The plugin_dir_path() function extracts the physical location relative to
the plugins directory from its fi lename.

 < ?php plugin_dir_path($file); ? >

 Parameters:

 $file - (string) (required) — The fi lename of a plugin

 Now look at an example on how to determine the local path to your plugin folder:

 < ?php
echo plugin_dir_path(__FILE__);
? >

 You can see you pass the __FILE__ PHP constant to the plugin_dir_path() function. This
produces the full local server path to your plugin directory:

/public_html/wp-content/plugins/my-custom-plugin/

 What if you need to get the local path to a fi le in a subdirectory inside your plugin directory?
You can also use the plugin_dir_path() function along with the subdirectory and fi les you
want to reference:

 < ?php
echo plugin_dir_path(__FILE__) .’js/scripts.js’;
? >

 This code would produce the following results:

/public_html/wp-content/plugins/my-custom-plugin/js/scripts.js

 As you can see, this function will be instrumental in developing a solid WordPress plugin. Using the
proper methods to access your plugin fi les and directories can ensure maximum compatibility with
all WordPress installations, regardless of how custom it is.

➤

 URL Paths

 Functions are also available to help determine URLs in WordPress. Following is a list of those
functions:

 plugins_url() — Full plugins directory URL (for example,
 http://example.com/wp - content/plugins)

 includes_url() — Full includes directory URL (for example,
 http://example.com/wp - includes)

 content_url() — Full content directory URL (for example,
 http://example.com/wp - content)

 admin_url() — Full admin URL (for example, http://example.com/wp - admin/)

 site_url() — Site URL for the current site (for example, http://example.com)

 home_url() — Home URL for the current site (for example, http://example.com)

 The site_url() and home_url() functions are similar and can lead to confusion in how they
work. The site_url() function retrieves the value as set in the wp_options table value for siteurl in
your database. This is the URL to the WordPress core fi les. If your core fi les exist in a subdirectory
 /wordpress on your web server, the value would be http://example.com/wordpress .

 The home_url() function retrieves the value for home in the wp_options table. This is the address
you want people to visit to view your WordPress web site. If your WordPress core fi les exist in
 /wordpress , but you want your web site URL to be http://example.com the home value should
be http://example.com .

 The plugins_url() function will be one of your best friends when building plugins in WordPress.
This function can help you easily determine the full URL to any fi le within your plugin directory.

 < ?php plugins_url($path, $plugin); ? >

 Parameters:

 $path - (string) (optional) — Path relative to the plugins URL

 $plugin - (string) (optional) — Plugin fi le that you want to be relative (that is, pass in
 __FILE__)

 For example, say you want to reference an image fi le to use as an icon in your plugin. You could
easily accomplish this using the following example:

 < ?php
echo ‘ < img src=”’ .plugins_url(‘images/icon.png’ , __FILE__). ‘” > ’;
? >

 The fi rst parameter value you pass to the function is the relative path to the image fi le you want to
include. The second parameter is the plugin fi le that you want to be relative, which in this case you

➤

➤

➤

➤

➤

➤

➤

➤

Determining Paths ❘ 17

18 ❘ CHAPTER 2 PLUGIN FOUNDATION

can simply send in the PHP constant __FILE__ . The preceding code would generate the HTML img
tag as follows:

 < img src=”http://example.com/wp-content/plugins/my-custom-plugin/images/icon.png” >

 Following are some of the advantages to using the plugins_url() function to determine plugin
URLs:

 Supports the mu - plugins plugin directory.

 Auto detects SSL, so if SSL is enabled in WordPress, the URL returned would contain https.

 Uses the WP_PLUGIN_URL constant, meaning it can detect the location of the plugin even if
the user has moved it to a custom location.

 Supports Multisite using the WPMU_PLUGIN_URL constant.

 ACTIVATE/DEACTIVATE FUNCTIONS

 WordPress features some common functions you can use in all plugins that you develop. This
section covers the activate and deactivate functions.

 Plugin Activation Function

 The plugin activation function is triggered when, you guessed it, a plugin is activated in WordPress.
This function is called register_activation_hook() . Using this function is a great way to set
some default options for your plugin. It can also verify that the version of WordPress is compatible
with your plugin. The function accepts two parameters as shown here:

 < ?php register_activation_hook($file, $function); ? >

 Parameters:

 $file - (string) (required) — Path to the primary plugin fi le

 $function - (string) (required) — The function to be executed when the plugin is activated

 Now look at an example of this function in action:

 < ?php
register_activation_hook(__FILE__, ‘boj_myplugin_install’);

function boj_myplugin_install() {
 //do cool activation stuff
}
? >

 The fi rst parameter you send the function is the path to your fi le, using the __FILE__ constant. This
is a PHP constant that always contains the absolute path to the fi le it is called from. The second
parameter is the unique function you want to call when your plugin is activated.

➤

➤

➤

➤

➤

➤

 Now that you understand how the register_activation_hook() function works, look at a
real - world example. Following is an example of how you can easily verify the version of WordPress
is compatible with your plugin.

 < ?php
register_activation_hook(__FILE__, ‘boj_install’);

function boj_install() {
 If (version_compare(get_bloginfo(‘version’), ‘3.1’, ‘ < ’)) {
 deactivate_plugins(basename(__FILE__)); // Deactivate our plugin
 }
}
? >

 Code snippet version - requirement.php

 Your install function boj_install() uses the get_bloginfo() function to retrieve the current
version of WordPress the user runs. Next you use the PHP function version_compare() to
verify the installed version of WordPress is at least 3.1. If the WordPress version is older than 3.1,
deactivate your plugin using the deactivate_plugins() function.

 Create Default Settings on Activate

 Another common plugin activation technique is to set some default settings when your plugin is
activated. Imagine your plugin has an entire page worth of options available. Chances are some of
those options need to be defi ned for your plugin to work properly. Rather than forcing the user to
visit your settings page and set those options, you can automatically set default options when the
plugin is activated.

 < ?php
register_activation_hook(__FILE__, ‘boj_install’);

function boj_install() {
 $boj_myplugin_options = array(
 ‘view’ = > ‘grid’,
 ‘food’ = > ‘bacon’,
 ‘mode’ = > ‘zombie’
);
 update_option(‘boj_myplugin_options’, $boj_myplugin_options);
}
? >

 The preceding code example creates an array of default options and stores them in WordPress
when your plugin is activated. Chapter 7, “ Plugin Settings, ” covers creating and saving options in
WordPress in more detail.

 Plugin Deactivation Function

 Just as there is an activation function, there is also a deactivation function. This is called the
 register_deactivation_hook() function. This function is triggered when your plugin is

Activate/Deactivate Functions ❘ 19

20 ❘ CHAPTER 2 PLUGIN FOUNDATION

deactivated in the WordPress Plugins screen. This function accepts the same two parameters as
the previous activation function.

 < ?php register_ deactivation_hook($file, $function); ? >

 Parameters:

 $file - (string) (required) — Path to the primary plugin fi le

 $function - (string) (required) — The function to be executed when the plugin is activated

 Now look at an example of the deactivation function in action:

 < ?php
register_deactivation_hook(__FILE__, ‘boj_myplugin_uninstall’);

function boj_myplugin_uninstall() {
 //do something
}
? >

 The preceding example would execute your boj_myplugin_uninstall() function when your
plugin is deactivated in WordPress.

 Deactivate Is Not Uninstall

 When dealing with the deactivation function, you shouldn ’ t include uninstall functionality when
a plugin is deactivated. Imagine if you accidentally deactivate a plugin and upon reactivation you
realize all your settings for that plugin have been deleted. Also, remember the WordPress automatic
update feature deactivates all plugins prior to installing the new version of WordPress.

 UNINSTALL METHODS

 Adding an uninstall feature to your plugin is an easy way to remove any data that your plugin
added to WordPress. This should be a required step to any plugin you develop. It doesn ’ t take much
work but can make the users of your plugin confi dent that they can remove your plugin completely
whenever they chose to.

 Why Uninstall Is Necessary

 Think of your plugin as a piece of software installed on your computer. You expect that piece of
software to have an easy way to uninstall it from your computer. You also expect the uninstaller to
remove any trace of that software from your computer. A plugin in WordPress is no different; it ’ s
essentially a piece of software installed in WordPress. If users want to uninstall your plugin, you
should provide the necessary uninstall functionality to remove all traces of the plugin from their
WordPress site.

 A good rule of thumb is to be considerate of your plugin user ’ s data. For example if your plugin
creates events as a custom post type, chances are the user does not want all of their events deleted

➤

➤

if they uninstall your plugin. In that case you might want to ask the user if they want to delete all
plugin data or not.

 WordPress provides two different methods for uninstalling a plugin: the uninstall.php fi le and the
uninstall hook.

 Uninstall.php

 The fi rst method is the uninstall.php fi le. This is typically the preferred method because it keeps
all your uninstall code in a separate fi le. To use this method, create an uninstall.php fi le and place
it in the root directory of your plugin. If this fi le exists WordPress executes its contents when
the plugin is deleted from the WordPress Plugins screen page. Now look at an example using the
uninstall.php fi le:

 < ?php
// If uninstall not called from WordPress exit
if(!defined(‘WP_UNINSTALL_PLUGIN’))
 exit ();

// Delete option from options table
delete_option(‘boj_myplugin_options’);

//remove any additional options and custom tables
? >

 The fi rst thing you want to do is verify that WordPress is actually calling the uninstall.php fi le.
Do this by verifying the WP_UNINSTALL_PLUGIN constant is defi ned. If it is not, immediately exit
the script. This is a security measure to ensure this fi le is not executed except during the uninstall
process of your plugin.

 After you have verifi ed this is a valid uninstall call, you can delete your plugin options from
the database. The goal of a plugin uninstall script is to remove any trace of the plugin from the
WordPress database. This includes deleting all options and dropping any custom tables that may
have been created. You don ’ t need to worry about deleting the actual plugin fi les or directories in
this function. WordPress will do that for you once your uninstall script runs.

 Uninstall Hook

 The second uninstall method available is the uninstall hook. If you delete a plugin in WordPress and
uninstall.php does not exist, WordPress executes the uninstall hook (if it exists).

 < ?php register_uninstall_hook($file, $function); ? >

 Parameters:

 $file - (string) (required) — Path to the primary plugin fi le

 $function - (string) (required) — The function to be executed when the plugin is
uninstalled

➤

➤

Uninstall Methods ❘ 21

22 ❘ CHAPTER 2 PLUGIN FOUNDATION

 Now look at an example of the uninstall function in action:

 < ?php
register_activation_hook(__FILE__, ‘boj_myplugin_activate’);

function boj_myplugin_activate() {

 //register the uninstall function
 register_uninstall_hook(__FILE__, ‘boj_myplugin_uninstaller’);

}

function boj_myplugin_uninstaller() {

 //delete any options, tables, etc the plugin created
 delete_option(‘boj_myplugin_options’);

}
? >

 As you can see, the register_uninstall_hook() should be called on activation and not on every
plugin load. To do this you ’ ll include the uninstall hook when the plugin is activated using the
 register_activation_hook() . Next call the uninstall function. Again pass the __FILE__ constant
as the fi rst parameter. The second parameter is your uninstall function that you want to execute.

 Inside your boj_myplugin_uninstaller() function is where all uninstall procedures take place.
Remember if the uninstall.php fi le exists in your plugins root folder, the uninstall hook won ’ t
actually execute.

 It ’ s important to note you cannot use a class method as a callback for the
uninstall hook. The reason is the uninstall hook would store a reference to
$this in the database, which would be unique to that page load.

 As suggested in this section, there are many pitfalls to using the uninstall hook. It ’ s a much
cleaner, and easier, process to use the uninstall.php method described earlier for removing plugin
settings and options when a plugin is deleted in WordPress.

 CODING STANDARDS

 WordPress maintains a set of coding standards for all core code. This helps keep the code style consistent
and clean throughout WordPress so it is easy to read. It ’ s recommended to follow these coding standards
when writing plugins for WordPress. This helps keep the consistency of the core code within your plugin.

 You can view the offi cial WordPress coding standards at http://codex.wordpress.org/
WordPress_Coding_Standards .

 Document Your Code

 One of the most obvious, yet commonly skipped steps, is code commenting. Commenting your
plugin ’ s source code is a quick and easy way to document exactly how your plugin works. There are
many benefi ts to commenting your code. The major benefi t to code commenting is to explain what
your code actually does, in plain English.

 Imagine writing an extremely complex plugin without a single comment. If you don ’ t review the
code for months and then return to it, you might have a hard time understanding what your code
actually does. Now imagine other developers are reviewing your code; without comments it could
take them a much longer time to follow your code logic and understand how your plugin functions.
Comments are benefi cial to everyone involved, so for everyone ’ s sanity, always comment your code!

 Nearly all functions in WordPress core contain inline documentation in PHPDoc form. PHPDoc is
a standardized method of describing a function ’ s usage in PHP comment form. Following is a basic
example of a PHPDoc formatted function comment:

 < ?php
/**
 * Short description
 *
 * Longer more detailed description
 *
 * @param type $varname1 Description
 * @param type $varname2 Description
 * @return type Description
*/
function boj_super_function($varname1, $varname2) {
 //do function stuff
}
? >

 As you can see, the preceding PHPDoc comment helps to describe the function directly below the
comment block. If I ’ m a developer looking over your plugin ’ s code, I can quickly determine exactly
how your function works, what parameters it accepts, and what I can expect returned without
even reading your function’s code. These comments are also used by more visual tools such as
PHPDocumentor and PHPXref.

 Naming Variables, Functions, and Files

 Variable and function names should always be written in lowercase. Words should also be separated
using underscores. Following is an example showing the proper way to name a function and variable:

 < ?php
function boj_myplugin_function_name ($boj_myplugin_variable) {
 //do something
}
? >

Coding Standards ❘ 23

24 ❘ CHAPTER 2 PLUGIN FOUNDATION

 Files should also be named using only lowercase letters; however, fi lenames should use hyphens to
separate words and not underscores. For example you might name your plugin: boj - plugin - name.php.

 Single and Double Quotes

 PHP enables you to defi ne strings using single or double quotes. In WordPress it ’ s recommended to
use single quotes whenever possible. One of the benefi ts of using single quotes is you rarely need
to escape HTML quotes in a string. Following is an example showing how to echo a link using the
single quote method:

 < ?php
echo ‘ < a href=”http://example.com/” > Visit Example.com < /a > ’;
? >

 You can also use the double quote method when concatenating a string in PHP. For example, look
at a simple way to insert a variable for your website URL:

 < ?php
$boj_myplugin_website = ‘http://example.com/’;
echo “ < a href=’$boj_myplugin_website’ > Visit Example.com < /a > ”;? >

 Set the $boj_myplugin_website variable to the URL you want to include in your HTML link.
Then concatenate the string to include the web site URL in your echo statement.

 Indentation

 Indentation should always refl ect the logical structure of the code. This means using real tabs, and
not spaces, when indenting your code. As an example look at a poorly indented if statement:

if (condition) {
echo ‘Yes’;
} elseif (condition2) {
echo ‘No’;
}

 The preceding code logic is hard to follow because no indentation refl ects the logical structure of the
 if statement. Now look at the same code sample using proper indentation:

 < ?php
if (condition) {
 echo ‘Yes’;
} elseif (condition2) {
 echo ‘No’;
}
? >

 Notice how using proper indentation makes reading the logic of the preceding if statement much
easier to follow. You can easily skim this code and understand the outcome of the statement. This is
why proper indentation is a must with any code you write.

 Brace Style

 Braces should always be used for multiline blocks of code. The brace should be positioned on the
same line as the conditional statement you are checking. Look at an example using the proper
bracing technique:

 < ?php
if (condition) {
 action1();
 action2();
} elseif (condition2 || condition3) {
 action3();
 action4();
} else {
 defaultaction();
}
? >

 If you have an extremely long block of code, it ’ s a good idea to put a short comment at the ending
brace to help determine at a glance what that ending brace actually ends:

 < ?php
if (condition) {
 action1();
 action2();
} elseif (condition2 || condition3) {
 action3();
 action4();
} else {
 defaultaction();
} //end of condition check
? >

 Space Usage

 Spaces should always be used after commas and on both sides of logical and assignment operators.
Now look at a few different examples using the proper spacing methods:

 < ?php
if ($foo == 34) {
 //do something
}

foreach ($foo as $bar) {
 //do something
}

$foo = array(34, 16, 8);

function super_function($param1 = ‘foo’, $param2 = ‘bar’) {
 //do something
}
? >

Coding Standards ❘ 25

26 ❘ CHAPTER 2 PLUGIN FOUNDATION

 Notice the spacing technique for each statement. This makes reading and following your code logic
much easier because the code examples are clean and consistent throughout.

 Shorthand PHP

 You shouldn ’ t use the shorthand PHP tags (< ? ? >) in your code. The reason for this is that
shorthand PHP tags must be enabled on your server before they will function. Many hosting
confi gurations have this feature disabled by default, which means your plugin would immediately
break when activated in WordPress. Instead, you should wrap your PHP code in standard tags:
 < ?php ? >

 SQL Statements

 When making database calls in WordPress you may need to write custom SQL statements to query
the proper data from the database. SQL statements can be broke into multiple lines if the complexity
of the statement warrants it. Even though SQL is not case - sensitive, it ’ s good practice to capitalize
the SQL commands in the statement.

SELECT username FROM table1 WHERE status = ‘active’

 Chapter 6, “ Plugin Security, ” discusses the proper way to use SQL statements in WordPress.

 PLUGIN DEVELOPMENT CHECKLIST

 When developing a new plugin in WordPress, you need to remember many things to create a proper
plugin foundation. Following is a checklist to help with the process. Following this checklist you can
be confi dent you have a proper plugin foundation for your new plugin:

 Determine a unique and descriptive plugin name.

 Is the name descriptive of your plugin ’ s function?

 Have you verifi ed the plugin doesn ’ t exist in the Plugin Directory?

 Set a unique plugin prefi x.

 Is the prefi x unique enough to avoid confl icts?

 Create your plugin folder structure.

 Will your plugin need a PHP directory?

 Will your plugin need a JavaScript directory?

 Will your plugin need a CSS directory?

 Will your plugin need an images directory?

 Create your default plugin fi les.

 Create your primary fi le named the same as your plugin folder.

 Create the uninstall.php fi le for your uninstall procedures.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 Create your plugin ’ s header code.

 Set your plugin name as you want it displayed.

 Add a detailed description about your plugin ’ s purpose.

 Set the proper version for your plugin.

 Verify both Plugin URI and Author URI values are set.

 Include a license for your plugin.

 Place the license code directly below your plugin header.

 Create your plugin ’ s activation function.

 Does your plugin require a specifi c version of WordPress or higher to function?

 Does your plugin require default options to be set when activated?

 Create your plugin ’ s deactivation function.

 Does your plugin require something to happen when it is deactivated?

 Create your plugin ’ s uninstall script.

 Create an uninstall.php fi le

 Include uninstall scripts in the fi le

 File references.

 Use the proper directory constants and functions to determine paths within
WordPress and your plugin.

 SUMMARY

 This chapter discussed creating a proper foundation when developing plugins for WordPress.
Following these techniques is essential in creating plugins that work across all types of WordPress
setups. Keeping your code properly documented is also an important step in detailing how your
code functions and why. This can save time in the future when revisiting your code for updates. It
can also help other developers understand your code logic.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Summary ❘ 27

Hooks

 WHAT ’ S IN THIS CHAPTER?

 Creating actions for action hooks

 Creating fi lters for fi lter hooks

 Using hooks within a PHP class

 Adding custom hooks to plugins

 Finding hooks within WordPress

 Hooks are the backbone of WordPress. They enable plugin developers to “ hook ” into
the WordPress workfl ow to change how it works without directly modifying the core
code. This enables users to easily upgrade to newer versions of WordPress without losing
modifi cations.

 If a developer modifi ed the core code, those edits would be lost the next time WordPress
was updated. The update would overwrite all those changes. Using hooks enables you to
develop plugins in separate folders apart from the core, keeping the plugin code safe from
updates.

 Without hooks, plugins would have no way to modify how WordPress works. The hooks
system you learn about in this chapter is used throughout the book and is something you will
use in nearly every plugin you create. After you learn how to use hooks, you will understand
exactly why WordPress is such a powerful platform and has thousands of plugins built for its
millions of users.

 WordPress has two primary types of hooks: action hooks and fi lter hooks. The former enables
you to execute a function at a certain point, and the latter enables you to manipulate the
output passed through the hook.

➤

➤

➤

➤

➤

 3

30 ❘ CHAPTER 3 HOOKS

 ACTIONS

 Action hooks enable you to fi re a function at specifi c points in the WordPress loading process or
when an event occurs. For example, you might want a function to execute when WordPress fi rst
loads a page or when a blog post is saved.

 You need to understand the do_action() function. When hooking into WordPress, your plugin
won ’ t call this function directly; however, your plugin will almost always use it indirectly.

 < ?php
do_action($tag, $arg = ‘’);
? >

 $tag — The name of the action hook.

 $arg — Value(s) passed to registered actions. It looks like a single parameter, but this isn ’ t
always the case. Action hooks have the option to pass any number of parameters or no
parameters at all. You need to check the WordPress source code for specifi c hooks because
the number of parameters changes on a per - hook basis.

 Following is an example of what an action hook would look like with multiple parameters.

 < ?php
do_action($tag, $arg_1, $arg_2, $arg_3);
? >

 Now take a look at a WordPress action hook called wp_head and how it appears in WordPress. This
hook is fi red within the < head > area on the front end of the site. WordPress and plugins usually use
this hook to add meta information, style sheets, and scripts.

 < ?php
do_action(‘wp_head’);
? >

 When this code fi res in WordPress, it looks for any actions registered for the wp_head action hook.
It then executes them in the order specifi ed. As you can see, it has a name of wp_head but passes no
extra parameters. This is often the case with action hooks.

 Following is an example of an action hook that has two extra parameters.

 < ?php
 do_action(‘save_post’, $post_ID, $post);
? >

➤

➤

 Hooks aren ’ t just for plugins. WordPress uses hooks internally. If you browse
through the core source code, you can see many examples of how WordPress
uses its own system to hook into itself.

 Here, you can see that the hook name is save_post and the parameters it passes are $post_ID
and $post .

 What Is an Action?

 An action is technically a PHP function. For a function to be considered an action, it would need to
be registered for an action hook. In the previous section, you can see what action hooks are, but for
action hooks to serve any purpose, they need to have an action registered for them.

 That ’ s where plugins come in. You develop custom functions (actions) that perform a specifi c task
when the action hook is fi red. To do this, you would use the add_action() function.

 < ?php
add_action($tag, $function, $priority, $accepted_args);
? >

 $tag — The name of the action hook your function executes on.

 $function — The name of your function that WordPress calls.

 $priority — An integer that represents the order in which the action is fi red. When no
value is given, it defaults to 10 . The lower the number, the earlier the function will be called.
The higher the number, the later it will be called.

 $accepted_args — The number of parameters the action hook will pass to your function.
By default, it passes only one parameter.

 Action hooks aren ’ t limited to a single action. Your plugin can add multiple functions to an action
hook. Other plugins, and even WordPress core, often add functions to the same hook.

 Now it ’ s time for you to put action hooks to use. One common action hook is wp_footer . It is
fi red on the front end of the site by the user ’ s WordPress theme. Generally, it is fi red just before
the closing < /body > tag in the HTML. In this example, you ’ re going to register an action for the
 wp_footer hook that adds a custom message to the footer.

 < ?php

add_action(‘wp_footer’, ‘boj_example_footer_message’, 100);

function boj_example_footer_message() {

 echo ‘This site is built using < a href=”http://wordpress.org”
 title=”WordPress publishing platform” > WordPress < /a > .’;

}

? >

 Code snippet boj - example - footer - message.php

➤

➤

➤

➤

Actions ❘ 31

32 ❘ CHAPTER 3 HOOKS

 Take a closer look at how you used add_action() from the preceding code.

 < ?php
add_action(‘wp_footer’, ‘boj_example_footer_message’, 100);
? >

 The fi rst parameter is the name of the hook (wp_footer). The second parameter is a callback
to your custom function (boj_example_footer_message). The third parameter is the priority (100).
Your function will likely be executed much later than other functions hooked to wp_footer because
of its priority of 100 . If this number were changed to 1 , it would be called earlier.

 It should be noted that hooks might be fi red more than once in the WordPress
fl ow for various reasons. Any actions added to these hooks will execute each
time the hook is fi red.

 Action Hook Functions

 You ’ ve now learned how the two most basic action hook functions work: do_action() and
 add_action() . WordPress also has other functions for working with action hooks that can be
useful in your plugins.

 do_action_ref_array

 The do_action_ref_array() function works the same way as do_action() works, with a
difference in how the arguments are passed. Rather than passing multiple, optional values as
additional parameters, it passes an array of arguments. The array of arguments is also a required
parameter. The purpose of the function is to pass an object by reference to actions added to a
specifi c hook. This means the action can change the object itself without returning it.

 < ?php
do_action_ref_array($tag, $args);
? >

 $tag — The name of the action hook.

 $args — An array of arguments passed to actions registered for the hook. Generally, this
would be an object that actions can change.

 Now take a look at a specifi c instance of how WordPress calls do_action_ref_array() . The
following code shows the pre_get_posts action hook. WordPress executes this hook before loading
posts from the database, enabling plugins to change how posts are queried.

 < ?php
do_action_ref_array(‘pre_get_posts’, array(& $this));
? >

➤

➤

 You can see that the pre_get_posts is the hook name, which is the fi rst parameter. The second
parameter in this case is an array of query arguments for pulling posts from the database. This hook
enables you to execute code based on that array of arguments.

 Suppose you wanted to randomly order posts on the blog home page rather than have the default
ordering by the post date. You would register an action on this hook and change the order.

 < ?php

add_action(‘pre_get_posts’, ‘boj_randomly_order_blog_posts’);

function boj_randomly_order_blog_posts($query) {

 if ($query- > is_home & & empty($query- > query_vars[‘suppress_filters’]))
 $query- > set(‘orderby’, ‘rand’);
}

? >

Code snippet boj - random - blog - posts.php

 remove_action

 remove_action() enables you to remove an action that has previously been added to a hook.
Typically, you would remove actions that WordPress adds by default. To remove an action, the
action must have already been added using the add_action() function. If your code runs before
the action is registered, the action will not be removed from the hook.

 The function returns true when the action was successfully removed and false when the action
could not be removed.

 < ?php
remove_action($tag, $function_to_remove, $priority, $accepted_args);
? >

 $tag — The name of the action hook the action you want to remove is hooked to.

 $function_to_remove — The name of the function that has been added to the hook.

 $priority — The priority given in the add_action() function. This defaults to a value of 10 .

 $accepted_args — The number of accepted arguments the action accepts. This defaults to
a value of 1 .

 To successfully remove an action from a hook, the $tag , $function_to_remove , and $priority
parameters must exactly match the parameters used in do_action() . Otherwise, the action will not
be removed and remove_action() will return false .

 Let ’ s take a look at one of WordPress ’ default actions called rel_canonical . This action adds a
canonical link between the opening < head > and closing < /head > element on the site ’ s front end.

➤

➤

➤

➤

Actions ❘ 33

34 ❘ CHAPTER 3 HOOKS

 < ?php
add_action(‘wp_head’, ‘rel_canonical’);
? >

 To remove this action, you must use the remove_action() function in your plugin. You need to
defi ne the $tag and $function_to_remove parameters. In this case, you don ’ t need to add the
 $priority parameter because no priority was explicitly given in the action previously defi ned.

 < ?php
remove_action(‘wp_head’, ‘rel_canonical’);
? >

 It is possible to remove any action added by WordPress, a plugin, or a theme within your plugin.
Generally, you remove actions within WordPress. Many of its default actions are defi ned in the
 wp - includes/default - filters.php fi le. Browsing this fi le can give you a general overview of
how WordPress uses action hooks.

 remove_all_actions

 In some plugins, you may fi nd it necessary to remove all actions for a given tag or all actions for a
given tag and priority. The remove_all_actions() function enables you to do this with a single
line of code instead of multiple uses of the remove_action() function.

 < ?php
remove_all_actions($tag, $priority);
? >

 $tag — The name of the action hook that you want to remove all actions on.

 $priority — The priority of the actions to remove. This parameter is optional and defaults
to false . If you set this parameter, only actions with this specifi c priority will be removed.

 In this next example, you remove all actions, regardless of priority, from the wp_head action hook.

 < ?php
remove_all_actions(‘wp_head’);
? >

 If you want to remove only actions with a specifi c priority, you would give a value for the second
parameter of $priority . To remove all actions with a priority of 1 for the wp_head hook use the
following code.

 < ?php
remove_all_actions(‘wp_head’, 1);
? >

➤

➤

 You should be careful when using this function. Other plugins and themes may add
actions that you are unaware of. Using this may break functionality that your plugin
users are expecting to work. It ’ s usually better to be as specifi c as possible with your
code. In most cases, you should use the remove_action() function instead.

 has_action

 Sometimes, you may fi nd it necessary to check if a hook has any actions or if a specifi c action has
been added to a hook before executing code. The has_action() function is a conditional function
that gives you the ability to check both these cases.

 < ?php
has_action($tag, $function_to_check);
? >

 $tag — The name of the action hook you want to check for actions registered to it.

 $function_to_check — The name of a function to check if it has been added to the hook.
This parameter is optional and defaults to a value of false .

 The return value for has_action() varies between a Boolean value and an integer. If $function_
to_check is not set, the function returns true if actions are added to the hook or false if no
actions are added to the hook. If $function_to_check is set and the function has been added to
the hook, the priority (integer) of the action will be returned. Otherwise, a value of false will be
returned.

 In the next example, you display a message based on whether the wp_footer action hook has any
action registered for it.

 < ?php

if (has_action(‘wp_footer’))
 echo ‘ < p > An action has been registered for the footer. < /p > ’;

else
 echo ‘ < p > An action hasn\’t been registered for the footer. < /p > ’;

? >

 Now look at an action WordPress core adds to wp_footer . The wp_print_footer_scripts() is
registered for this hook by default.

 < ?php
add_action(‘wp_footer’, ‘wp_print_footer_scripts’);
? >

 If you want to display a message if that particular action were registered for the hook, you would
use the following code.

 < ?php

if (has_action(‘wp_footer’, ‘wp_print_footer_scripts’))
 echo ‘ < p > The wp_print_footer_scripts is registered for wp_footer. < /p > ’;

? >

➤

➤

Actions ❘ 35

36 ❘ CHAPTER 3 HOOKS

 did_action

 The did_action() function enables your plugin to check if an action hook has already been
executed or to count the number of times one has been executed. This also means that some action
hooks are fi red multiple times during a single page load.

 < ?php
did_action($tag);
? >

 $tag — Name of the action hook to check.

 The function returns the number of times the hook has been fi red or false if it hasn ’ t been fi red. The
most common use case of the function is to check if an action hook has already been fi red and
execute code based on the return value of did_action() .

 In the next example, you defi ne a PHP constant if the plugins_loaded action hook has already fi red.

 < ?php

if (did_action(‘plugins_loaded’))
 define(‘BOJ_MYPLUGIN_READY’, true);

? >

 register_activation_hook and register_deactivation_hook

 WordPress has two functions for registering action hooks for the activation and deactivation of
individual plugins. Although these are technically functions to create custom hooks, both functions
are covered in Chapter 2, “ Plugin Foundation, ” in complete detail.

 Commonly Used Action Hooks

 WordPress has many action hooks, but some of them are used more often than others. Knowing
what these hooks are can help you lay down the groundwork for your plugins.

 plugins_loaded

 For plugin developers, the plugins_loaded action hook is probably the most important hook. It is
fi red after most of the WordPress fi les are loaded but before the pluggable functions and WordPress
starts executing anything. In most plugins, no other code should be run until this hook is fi red.
 plugins_loaded is executed when all the user ’ s activated plugins have been loaded by WordPress. It
is also the earliest hook plugin developers can use in the loading process.

 A WordPress plugin should do its setup on this hook. Other actions should also be added within the
callback function used on this hook.

 In the following example, you use the boj_example_footer_message action you created in the
previous section. Rather than calling it separately, add it to your setup action, which is hooked to
 plugins_loaded .

➤

 < ?php

add_action(‘plugins_loaded’, ‘boj_footer_message_plugin_setup’);

function boj_footer_message_plugin_setup() {

 /* Add the footer message action. */
 add_action(‘wp_footer’, ‘boj_example_footer_message’, 100);

}

function boj_example_footer_message() {

 echo ‘This site is built using < a href=”http://wordpress.org”
 title=”WordPress publishing platform” > WordPress < /a > .’;

}

? >

 It is good practice to create a setup function and hook it to plugins_loaded . By
doing this, you can ensure that you don ’ t inadvertently trigger any errors from a
specifi c WordPress function not being loaded.

 init

 The init hook is fi red after most of WordPress is set up. WordPress also adds a lot of internal
functionality to this hook such as the registration of post types and taxonomies and the
initialization of the default widgets.

 Because nearly everything in WordPress is ready at this point, your plugin will probably use this
hook for anything it needs to do when all the information from WordPress is available.

 In the following example, you add the ability for users to write an excerpt for pages. You would
do this on init because the “ page ” post type is created at this point using the add_post_type_
support() function (see Chapter 11, “ Extending Posts ”).

 < ?php

add_action(‘init’, ‘boj_add_excerpts_to_pages’);

function boj_add_excerpts_to_pages() {

 add_post_type_support(‘page’, array(‘excerpt’));

}

? >

Actions ❘ 37

38 ❘ CHAPTER 3 HOOKS

 admin_menu

 The admin_menu hook is called only when an administration page loads. Whenever your plugin
works directly in the admin, you would use this hook to execute your code.

 The next example adds a sub - menu item labeled BOJ Settings to the Settings menu in the WordPress
admin (for more on this, see Chapter 7, “ Plugin Settings ”).

 < ?php

add_action(‘admin_menu’, ‘boj_admin_settings_page’);

function boj_admin_settings_page() {

 add_options_page(
 ‘BOJ Settings’,
 ‘BOJ Settings’,
 ‘manage_options’,
 ‘boj_admin_settings’,
 ‘boj_admin_settings_page’
);

}

? >

 template_redirect

 The template_redirect action hook is important because it ’ s the point where WordPress knows
which page a user is viewing. It is executed just before the theme template is chosen for the
particular page view. It is fi red only on the front end of the site and not in the administration area.
This is a good hook to use when you need to load code only for specifi c page views.

 In the next example, you load a style sheet fi le only for a singular post view.

 < ?php

add_action(‘template_redirect’, ‘boj_singular_post_css’);

function boj_singular_post_css() {

 if (is_singular(‘post’)) {
 wp_enqueue_style(
 ‘boj-singular-post’,
 ‘boj-example.css’,
 false,
 0.1,
 ‘screen’
);
 }

}

? >

Filters ❘ 39

 wp_head

 On the front end of the site, WordPress themes call the wp_head() function, which fi res the wp_head
hook. Plugins use this hook to add HTML between the opening < head > tag and its closing < /head > .

 In the following example, you add a meta description on the front page of the site using the site ’ s
description.

 < ?php

add_action(‘wp_head’, ‘boj_front_page_meta_description’);

function boj_front_page_meta_description() {

 /* Get the site description. */
 $description = esc_attr(get_bloginfo(‘description’));

 /* If a description is set, display the meta element. */
 if (!empty($description))
 echo ‘ < meta name=”description” content=”’ . $description . ‘” / > ’;
}

? >

 Many plugins incorrectly use the wp_head action hook to add JavaScript to the
header when they should be using the wp_enqueue_script() function (see
Chapter 12, “ JavaScript and AJAX ”). The only time JavaScript should be added
to this hook is when it ’ s not located in a separate JavaScript fi le.

 FILTERS

 Filter hooks are much different than action hooks. They enable you to manipulate the output of
code. Whereas action hooks enable you to insert code, fi lter hooks enable you to overwrite code that
WordPress passes through the hook. Your function would “ fi lter ” the output.

 To grasp the concept of fi lter hooks, you must fi rst understand how the apply_filters()
WordPress function works.

 < ?php
apply_filters($tag, $value);
? >

 $tag — The name of the fi lter hook.

 $value — The parameter passed to any fi lters added to the hook. The function can also
take in any number of extra $value parameters to pass to fi lters.

 It is important to note here that $value must be returned back to WordPress when writing a fi lter.

➤

➤

40 ❘ CHAPTER 3 HOOKS

 Here is an example of a fi lter hook from the core WordPress code.

 < ?php
apply_filters(‘template_include’, $template);
? >

 In this example, template_include is name of the fi lter hook. $template is a fi le name that can be
changed through fi lters registered for the fi lter hook.

 What Is a Filter?

 A fi lter is a function registered for a fi lter hook. The function itself would take in at least a single
parameter and return that parameter after executing its code. Without a fi lter, fi lter hooks don ’ t do
anything. They exist so that plugin developers can change different variables. This can be anything
from a simple text string to a multidimensional array.

 When a fi lter hook is called by the apply_filters() function, any fi lters registered for the hook
are executed. To add a fi lter, use the add_filter() function.

 < ?php
add_filter($tag, $function, $priority, $accepted_args);
? >

 $tag — The name of the hook you want to register your fi lter for.

 $function — The function name of the fi lter that you create to manipulate the output.

 $priority — An integer that represents in what order your fi lter should be applied. If no
value is added, it defaults to 10 .

 $accepted_args — The number of parameters your fi lter function can accept. By default
this is 1 . Your function must accept at least one parameter, which will be returned.

 You can add multiple fi lters to the same fi lter hook. Other plugins and WordPress can also add
fi lters to the hook. Filter hooks aren ’ t limited to a single fi lter. It is important to note this because
each fi lter must always return a value for use by the other fi lters. If your function doesn ’ t return a
value, you risk breaking the functionality of both WordPress and other plugins.

 Now look at the wp_title fi lter hook in WordPress, which is a fi lter hook responsible for the
 < title > element on a page.

 < ?php
apply_filters(‘wp_title’, $title, $sep, $seplocation);
? >

 wp_title — The name of the hook.

 $title — A string and the value that you want to fi lter and return back to WordPress.

 $sep — A string that tells you what the separator should be between elements in the
 < title > element.

 $seplocation — The location of the separator. In the next example, you don ’ t use it.

➤

➤

➤

➤

➤

➤

➤

➤

Filters ❘ 41

 You ’ re now going to write a function that fi lters the output of $title by appending the site ’ s name
to the end of page title.

 < ?php

add_filter(‘wp_title’, ‘boj_add_site_name_to_title’, 10, 2);

function boj_add_site_name_to_title($title, $sep) {

 /* Get the site name. */
 $name = get_bloginfo(‘name’);

 /* Append the name to the $title variable. */
 $title .= $sep . ‘ ‘ . $name;

 /* Return the title. */
 return $title;
}

? >

 Take a look at the line telling WordPress to add a fi lter to wp_title .

 < ?php
add_filter(‘wp_title’, ‘boj_add_site_name_to_title’, 10, 2);
? >

 It says that you want to add a fi lter named boj_add_site_name_title_title to the wp_title
fi lter hook. You set a priority of 10 and tell your fi lter to accept two parameters.

 The boj_add_site_name_to_title() function manipulates the $title parameter and returns it
back to WordPress. The $sep parameter can be used within the function but is not returned.

 Filter Hook Functions

 Aside from the apply_filters() and add_filter() functions covered in the previous sections of
this chapter, WordPress has several other functions for working with fi lter hooks.

 apply_fi lters_ref_array

 The apply_filters_ref_array() function works nearly the same as apply_filters() . One
major difference is what parameters are passed. Rather than accepting multiple values, it accepts
an array of arguments. Both parameters are required. It is also important to note that the $args
parameter should be passed by reference rather than value.

 < ?php
apply_filters_ref_array($tag, $args);
? >

 $tag — The name of the fi lter hook.

 $args — An array of arguments to pass to fi lters registered for the hook.

➤

➤

42 ❘ CHAPTER 3 HOOKS

 Suppose you have a complex database query that you need to perform to load posts for the
front page of the site that normal WordPress functions don ’ t enable. WordPress has a fi lter hook
called posts_results that enables you to change this. Here ’ s what it looks like in the WordPress
core code.

 < ?php
$this- > posts = apply_filters_ref_array(
 ‘posts_results’, array($this- > posts, & $this)
);
? >

 This fi lter hook passes an array of post objects to any fi lters registered for it. Using the following
example, you completely overwrite this array of post objects and replace it with a custom set. By
default, WordPress queries posts of the post post type. You change this to list posts of the page post
type on the site home page.

 The code example uses the wpdb class, which is covered in more detail in Chapter 6, “ Plugin
Security. ”

 < ?php

add_filter(‘posts_results’, ‘boj_custom_home_page_posts’);

function boj_custom_home_page_posts($results) {
 global $wpdb, $wp_query;

 /* Check if viewing the home page. */
 if (is_home()) {

 /* Posts per page. */
 $per_page = get_option(‘posts_per_page’);

 /* Get the current page. */
 $paged = get_query_var(‘paged’);

 /* Set the $page variable. */
 $page = ((0 == $paged || 1 == $paged) ? 1 : absint($paged));

 /* Set the number of posts to offset. */
 $offset = ($page - 1) * $per_page . ‘, ‘;

 /* Set the limit by the $offset and number of posts to show. */
 $limits = ‘LIMIT ‘. $offset . $per_page;

 /* Get results from the database. */
 $results = $wpdb- > get_results(“
 SELECT SQL_CALC_FOUND_ROWS $wpdb- > posts.*
 FROM $wpdb- > posts
 WHERE 1=1
 AND post_type = ‘page’
 AND post_status = ‘publish’

Filters ❘ 43

 ORDER BY post_title ASC
 $limits
 “);
 }

 return $results;
}

? >

 Code snippet boj - custom - home - page.php

 remove_fi lter

 The remove_filter() function enables plugins to remove fi lters that have been previously
registered for a fi lter hook. To successfully remove a fi lter, this function must be called after a fi lter
has been registered using the add_filter() function.

 < ?php
remove_filter($tag, $function_to_remove, $priority, $accepted_args);
? >

 $tag — The name of the fi lter hook to remove a fi lter from.

 $function_to_remove — The function to remove from the fi lter hook.

 $priority — The priority previously used in add_filter() to register the fi lter. This
parameter defaults to 10 .

 $accepted_args — The number of accepted arguments previously declared in the
 add_filter() called to register the fi lter. This parameter defaults to 1 .

 The function returns true when the fi lter is successfully removed and returns false when the
removal is unsuccessful. The $tag , $function_to_remove , and $priority parameters must
also match the parameters set with add_filter() exactly. Otherwise, the fi lter will not
be removed.

 Now look at WordPress ’ default fi lters defi ned in wp - includes/default - filters.php . One
interesting fi lter is a function called wpautop() , which converts double line breaks into HTML
paragraphs. It is executed on several hooks in the core code. Here ’ s how one instance of it looks in
the core WordPress code.

 < ?php
add_filter(‘the_content’, ‘wpautop’);
? >

 This applies the wpautop() fi lter to a post ’ s content, converting each double line break of the
post into a paragraph. You may have a client project that requires that specifi c language and
formatting rules be followed. For example, the client may not want their content to have paragraphs
automatically formatted. You would use the remove_filter() function to remove the fi lter from
the the_content hook.

➤

➤

➤

➤

44 ❘ CHAPTER 3 HOOKS

 < ?php

remove_filter(‘the_content’, ‘wpautop’);

? >

 In the previous code, you had to defi ne the $tag and $function_to_remove parameters to ensure
that the correct fi lter was removed from the correct hook. Since the original action defi ned no
priority and the default is 10 , you didn ’ t have to defi ne the $priority parameter.

 remove_all_fi lters

 In some plugins, you may need to remove all fi lters from a specifi c fi lter hook or remove fi lters with
a particular priority from a fi lter hook. The remove_all_filters() function enables you to do this
with a single line of code.

 < ?php
remove_all_filters($tag, $priority);
? >

 $tag — Name of the fi lter hook to remove all fi lters from.

 $priority — Priority of the fi lters to remove from the fi lter hook. This parameter is
optional. If not set, all fi lters will be removed from the hook.

 Suppose you want to remove all default formatting such as auto - paragraphs and the conversion of
certain characters to their character entity equivalents for post content. WordPress adds several
fi lters to the the_content fi lter hook that handles this automatically. To remove all these fi lters, use
the remove_all_filters() with a single parameter with a value of the_content .

 < ?php
remove_all_filters(‘the_content’);
? >

 If you want to remove only fi lters with a specifi c priority, you need to set the second parameter. In
the next example, you remove fi lters for the_content with the priority of 11 .

 < ?php
remove_all_filters(‘the_content’, 11);
? >

 has_fi lter

 The has_filter() function enables plugins to check if any fi lters have been registered for a fi lter
hook or if a specifi c fi lter has been registered for the hook.

 < ?php
has_filter($tag, $function_to_check);
? >

➤

➤

Filters ❘ 45

 $tag — Name of the fi lter hook to check whether it has any registered fi lters.

 $function_to_check — A specifi c function to check against the fi lter. This parameter is
optional.

 The function returns false if no fi lter is found for the given hook. It returns true if a fi lter is
found. However, if the $function_to_check parameter is set, it returns the priority of the fi lter.

 Using the following code, you can check if a fi lter has been added to the_content . The code prints
a message based on the return value of has_filter() .

 < ?php

if (has_filter(‘the_content’))
 echo ‘The content filter hook has at least one filter.’;

else
 echo ‘The content filter hook has no filters.’;

? >

 If you want to check for a specifi c fi lter registered for a fi lter hook, you need to use the $function_
to_check parameter. Suppose you want to check if the WordPress auto - paragraph functionality
was applied to the post content. With the following code, you can print a message if this is true.

 < ?php

if (has_filter(‘the_content’, ‘wpautop’))
 echo ‘Paragraphs are automatically formatted for the content.’;

? >

 current_fi lter

 The current_filter() function returns the name of the fi lter hook currently executed. However,
it doesn ’ t just work with fi lter hooks; it applies to action hooks as well, so it returns the name of
the current action or fi lter hook. This function is especially useful if you use a single function for
multiple hooks but need the function to execute differently depending on the hook currently fi ring.

 Suppose you have a client that needs to remove specifi c words from post titles and post content. The
client wants to allow some words in the post title, but the allowed set of words is slightly different
for the post content. You can use a single function to fi lter both the_content and the_title while
using the current_filter() function to set the words based on which hook is currently executed.

 Using the following code, you can set an array of unwanted words depending on the case and
replace them with “ Whoops! ” in the text.

 < ?php

add_filter(‘the_content’, ‘boj_replace_unwanted_words’);
add_filter(‘the_title’, ‘boj_replace_unwanted_words’);

function boj_replace_unwanted_words($text) {

➤

➤

46 ❘ CHAPTER 3 HOOKS

 /* If the_content is the filter hook, set its unwanted words. */
 if (‘the_content’ == current_filter())
 $words = array(‘profanity’, ‘curse’, ‘devil’);

 /* If the_title is the filter hook, set its unwanted words. */
 elseif (‘the_title’ == current_filter())
 $words = array(‘profanity’, ‘curse’);

 /* Replace unwanted words with “Whoops!” */
 $text = str_replace($words, ‘Whoops!’, $text);

 /* Return the formatted text. */
 return $text;
}

? >

 Code snippet boj - replace - unwanted - words.php

 Quick Return Functions

 Often, you ’ ll need to write a function that returns a common value to a fi lter hook such as true ,
 false , or an empty array. You might even be tempted to use PHP ’ s create_function() function to
quickly return a value.

 WordPress has several functions for handling scenarios such as this. With the next example code,
you disable the user contact methods, which are a list of < input > boxes on individual user edit
screens in the WordPress admin. To disable these boxes, you would need to return an empty array.
Normally, you ’ d have to add the fi lter hook call and code the function.

 < ?php

add_filter(‘user_contactmethods’, ‘boj_return_empty_array’);

function boj_return_empty_array() {
 return array();
}

? >

 Writing the code for that isn ’ t so bad if doing it once or twice. However, it almost seems silly to have
to write an entire function to return an empty array. WordPress makes this much easier. Because
you ’ re simply disabling these boxes, you can use WordPress ’ s __return_empty_array() function as
a fi lter for quickly returning an empty array, replacing the previous code snippet with the following.

 < ?php

add_filter(‘user_contactmethods’, ‘__return_empty_array’);

? >

Filters ❘ 47

 Using __return_empty_array is important here. WordPress will expect the value returned to be an
array, so returning something other than an array would result in a PHP error.

 The WordPress functions for quickly returning values can come in handy when developing plugins.
It ’ s always important to check the core code to see what value is expected after fi lters have been
applied. Each scenario will call for a specifi c return value type:

 __return_false — Returns the Boolean value of false .

 __return_true — Returns the Boolean value of true .

 __return_empty_array — Returns an empty PHP array.

 __return_zero — Returns the integer 0 .

 These are simply a few functions WordPress makes available for use within plugins. If you fi nd
yourself writing one - line functions just to return a single value to a fi lter hook, you have the option
of creating your own functions for handling this if the previous list of functions doesn ’ t cover your
use case.

 Commonly Used Filter Hooks

 WordPress has hundreds of fi lter hooks for use by plugin developers. Narrowing these down to a
small list of some commonly used hooks doesn ’ t come close to accurately representing what a plugin
can accomplish by using the hook system. In this section, you learn how to use some of the more
common fi lter hooks that plugin developers use in their plugins.

 the_content

 If there ’ s one fi lter hook that plugin authors use more than any other, it is the_content . Without
content, a site would be essentially useless. It is the most important thing displayed on the site, and
plugins use this hook to add many features to a site.

 The the_content hook passes a post ’ s content to any fi lters registered for it. Filters then manipulate
the content, usually for extra formatting or to append additional information about the post.

 With the next code example, you append a list of related posts by post category to the_content for
a reader to see when viewing a single post.

 < ?php

add_filter(‘the_content’, ‘boj_add_related_posts_to_content’);

function boj_add_related_posts_to_content($content) {

 /* If not viewing a singular post, just return the content. */
 if (!is_singular(‘post’))
 return $content;

 /* Get the categories of current post. */
 $terms = get_the_terms(get_the_ID(), ‘category’);

 /* Loop through the categories and put their IDs in an array. */

➤

➤

➤

➤

48 ❘ CHAPTER 3 HOOKS

 $categories = array();
 foreach ($terms as $term)
 $categories[] = $term- > term_id;

 /* Query posts with the same categories from the database. */
 $loop = new WP_Query(
 array(
 ‘cat__in’ = > $categories,
 ‘posts_per_page’ = > 5,
 ‘post__not_in’ = > array(get_the_ID()),
 ‘orderby’ = > ‘rand’
)
);

 /* Check if any related posts exist. */
 if ($loop- > have_posts()) {

 /* Open the unordered list. */
 $content .= ‘ < ul class=”related-posts” > ’;

 while ($loop- > have_posts()) {
 $loop- > the_post();

 /* Add the post title with a link to the post. */
 $content .= the_title(
 ‘ < li > < a href=”’ . get_permalink() . ‘” > ’,
 ‘ < /a > < /li > ’,
 false
);
 }

 /* Close the unordered list. */
 $content .= ‘ < /ul > ’;

 /* Reset the query. */
 wp_reset_query();
 }

 /* Return the content. */
 return $content;
}

? >

 Code snippet boj - related - posts.php

 the_title

 Post titles are almost as important as the post content, which makes the_title a popular fi lter
hook for use. You can use this hook to add information or overwrite completely.

 One useful fi lter to use for the_title is a function to strip HTML tags from it. Users sometimes
add tags here that can mess up the formatting of the title on output. Using the following code, you
can strip all tags a user might use when writing a post title.

Filters ❘ 49

 < ?php

add_filter(‘the_title’, ‘boj_strip_tags_from_titles’);

function boj_strip_tags_from_titles($title) {

 $title = strip_tags($title);

 return $title;
}

? >

 comment_text

 The comment_text hook is often a useful fi lter hook because comments typically play a large role
for blogs and other types of sites.

 With the next code example, you check if a comment was made by a registered user on the site.
If the user is registered, you can append a paragraph that prints the user ’ s role for the site (see
Chapter 8, “ Users ”).

 < ?php

add_filter(‘comment_text’, ‘boj_add_role_to_comment_text’);

function boj_add_role_to_comment_text($text) {
 global $comment;

 /* Check if comment was made by a registered user. */
 if ($comment- > user_id > 0) {

 /* Create new user object. */
 $user = new WP_User($comment- > user_id);

 /* If user has a role, add it to the comment text. */
 if (is_array($user- > roles))
 $text .= ‘ < p > User Role: ‘ . $user- > roles[0] . ‘ < /p > ’;
 }

 return $text;
}

? >

 template_include

 template_include is a sort of catchall fi lter hook for many other, more specifi c fi lter hooks.

 front_page_template

 home_template

 single_template

➤

➤

➤

50 ❘ CHAPTER 3 HOOKS

 page_template

 attachment_template

 archive_template

 category_template

 tag_template

 author_template

 date_template

 archive_template

 search_template

 404_template

 index_template

 It is used after the theme template fi le for the current page has been chosen. WordPress chooses
a template based on the page currently viewed by a reader. You can add a fi lter for each of the
individual fi lter hooks or fi lter them all at the end with the template_include hook.

 Suppose you wanted to build a custom template hierarchy to allow themes to use templates based on
your plugin ’ s criteria instead of the normal WordPress template hierarchy. The template_include
and the other hooks in the previous list enable you to do this.

 Using the next example code, you check if a template exists for single posts by category. By default,
WordPress looks for a single.php fi le fi rst and then falls back to index.php if it doesn ’ t exist. Your
function looks for a fi le called single - category - $slug.php ($slug is the category slug), so if a
user has a category with the slug of “ art ” and a template named single - category - art.php in
their theme, this fi le will be used in lieu of single.php .

 < ?php

add_filter(‘single_template’, ‘boj_single_template’);

function boj_single_template($template) {
 global $wp_query;

 /* Check if viewing a singular post. */
 if (is_singular(‘post’)) {
 /* Get the post ID. */
 $post_id = $wp_query- > get_queried_object_id();

 /* Get the post categories. */
 $terms = get_the_terms($post_id, ‘category’);

 /* Loop through the categories, adding slugs as part of the file name. */
 $templates = array();
 foreach ($terms as $term)
 $templates[] = “single-category-{$term- > slug}.php”;

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 /* Check if the template exists. */
 $locate = locate_template($templates);

 /* If a template was found, make it the new template. */
 if (!empty($locate))
 $template = $locate;
 }

 /* Return the template file name. */
 return $template;
}

? >

 Code snippet boj - single - template.php

 USING HOOKS FROM WITHIN A CLASS

 Throughout this chapter, you ’ ve seen many examples of using action and fi lter hooks with PHP
functions. When adding a method of a class as an action or fi lter, the format of the calls to add_
action() and add_filter() is slightly different.

 In general, plugins most often use functions as actions and fi lters rather than class methods. However,
there will be cases in which using a class will be benefi cial to your plugin, and you will need to know
how to register methods for hooks from within the class.

 Take a look at a basic function registered for an action hook, which was covered in detail in the
section on actions earlier in the chapter.

 < ?php
add_action($tag, $function_to_add);
? >

 When using a method such as $function_to_add from within a class, you must change $function_
to_add to an array with & $this as the fi rst argument and the method name as the second argument.

 < ?php
add_action($tag, array(& $this, $method_to_add));
? >

 The same is true for fi lter hooks as well. A function added to a fi lter hook would normally look like this:

 < ?php
add_filter($tag, $function_to_add);
? >

 When using a class method as a fi lter, you must also change the $function_to_add parameter.

 < ?php
add_filter($tag, array(& $this, $method_to_add));
? >

Using Hooks from Within a Class ❘ 51

52 ❘ CHAPTER 3 HOOKS

 In the following example, you build a class that has a constructor method, a method used as an
action, and a method used as a fi lter. The add_filters() method checks if the reader is currently
viewing a singular post view. If true, the content() method appends the last modifi ed date of the
post to the post content.

 < ?php

class BOJ_My_Plugin_Loader {

 /* Constructor method for the class. */
 function BOJ_My_Plugin_Loader() {

 /* Add the ‘singular_check’ method to the ‘template_redirect’ hook. */
 add_action(‘template_redirect’, array(& $this, ‘singular_check’));
 }

 /* Method used as an action. */
 function singular_check() {

 /* If viewing a singular post, filter the content. */
 if (is_singular())
 add_filter(‘the_content’, array(& $this, ‘content’));
 }

 /* Method used as a filter. */
 function content($content) {

 /* Get the date the post was last modified. */
 $date = get_the_modified_time(get_option(‘date_format’));

 /* Append the post modified date to the content. */
 $content .= ‘ < p > Post last modified: ‘ . $date . ‘ < /p > ’;

 /* Return the content. */
 return $content;
 }
}

$boj_myplugin_loader = new BOJ_My_Plugin_Loader();

? >

 Code snippet boj - class - hooks.php

 CREATING CUSTOM HOOKS

 Not only can plugins take advantage of the core code ’ s built - in hooks, but they can also create
custom hooks for use by other plugins and themes. Doing so can be especially benefi cial with code
when it ’ s okay to change the output of that code.

 Your plugin would use one of four available functions for creating custom action hooks.

 do_action()

 do_action_ref_array()

 apply_filters()

 apply_filters_ref_array()

 You would use the fi rst two functions for creating custom action hooks and the next two functions
for creating custom fi lter hooks.

 Benefi ts of Creating Custom Hooks

 Custom hooks make your plugin more fl exible, allow it to be extended by others, and gives you the
ability to hook into the execution of various processes throughout your plugin within the plugin itself.

 Using custom hooks also keep users from editing your work directly. The importance of this is that
when you provide an update for the plugin, users won ’ t lose any modifi cations they ’ ve made.

 Custom Action Hook Example

 In this custom action hook example, you create a plugin setup function. The function defi nes a
constant that can be altered. Other plugins may also execute any code they want on the hook. You
provide it so that they have an opportunity to run code at that point.

 < ?php

add_action(‘plugins_loaded’, ‘boj_myplugin_setup’);

function boj_myplugin_setup() {

 /* Allow actions to fire before anything else. */
 do_action(‘boj_myplugin_setup_pre’);

 /* Check if the root slug is defined. */
 if (!defined(‘BOJ_MYPLUGIN_ROOT_SLUG’))
 define(‘BOJ_MYPLUGIN_ROOT_SLUG’, ‘articles’);
}

? >

 Other plugins or themes may hook into boj_myplugin_setup_pre and execute any function.
Suppose you want to change the BOJ_MYPLUGIN_ROOT_SLUG constant from “ articles ” to “ papers. ”
You can create a custom action to add to the hook.

 < ?php

add_action(‘boj_myplugin_setup_pre’, ‘boj_define_myplugin_constants’);

function boj_define_myplugin_constants() {

 define(‘BOJ_MYPLUGIN_ROOT_SLUG’, ‘papers’);
}

? >

➤

➤

➤

➤

Creating Custom Hooks ❘ 53

54 ❘ CHAPTER 3 HOOKS

 Custom Filter Hook Example

 Suppose you have a function that displays a list of posts given a specifi c set of arguments. You may
want to grant others the ability to fi lter the arguments and fi lter the fi nal output.

 In this example, you write a function that lists the top 10 posts by the number of comments a post
has received. The function enables users to fi lter the arguments for grabbing the posts from the
database and enables them to fi lter the fi nal HTML output of the list.

 < ?php

function boj_posts_by_comments() {

 /* Default arguments. */
 $args = array(
 ‘post_type’ = > ‘post’,
 ‘posts_per_page’ = > 10,
 ‘order’ = > ‘DESC’,
 ‘orderby’ = > ‘comment_count’
);

 /* Apply filters to the arguments. */
 $args = apply_filters(‘boj_posts_by_comments_args’, $args);

 /* Set up the output variable. */
 $out = ‘’;

 /* Query posts from the database by the given arguments. */
 $loop = new WP_Query($args);

 /* Check if posts are found. */
 if ($loop- > have_posts()) {

 /* Open the unordered list. */
 $out .= ‘ < ul class=”posts-by-comments” > ’;

 /* Loop through the posts. */
 while ($loop- > have_posts()) {

 $loop- > the_post();

 /* Add the post title to the list. */
 $out .= the_title(‘ < li > ’, ‘ < /li > ’, false);
 }

 /* Close the unordered list. */
 $out .= ‘ < /ul > ’;
 }

 /* Apply filters to the final output. */
 $out = apply_filters(‘boj_posts_by_comments’, $out);

 /* Display the HTML. */
 echo $out;
}

? >

 To fi lter the arguments, add a fi lter to boj_posts_by_comments_args . Suppose you want to change
the default number of 10 posts to 15 . You add a custom fi lter for this.

 < ?php

add_filter(‘boj_posts_by_comments_args’, ‘boj_change_posts_by_comments_args’);

function boj_change_posts_by_comments_args($args) {

 /* Change the value of the posts_per_page array key. */
 $args[‘posts_per_page’] = 15;

 /* Return the $args parameter. */
 return $args;
}

? >

 To fi lter the fi nal HTML output, add a fi lter to boj_posts_by_comments . Suppose you want to
change the unordered list to an ordered list with a custom fi lter.

 < ?php

add_filter(‘boj_posts_by_comments’, ‘boj_change_posts_by_comments’);

function boj_change_posts_by_comments($out) {

 /* Change the opening < ul > to an < ol > . */
 $out = str_replace(‘ < ul ‘, ‘ < ol ‘, $out);

 /* Change the closing < /ul > to an < /ol > . */
 $out = str_replace(‘ < /ul > ’, ‘ < /ol > ’, $out);

 /* Return the filtered HTML. */
 return $out;
}

? >

 HOW TO FIND HOOKS

 It would be nearly impossible to give a complete list of all the available hooks in WordPress. In
earlier sections of this chapter, you learned about some of the more common action and fi lter hooks,
but these sections cover only a small sampling of what WordPress has to offer.

How to Find Hooks ❘ 55

56 ❘ CHAPTER 3 HOOKS

 New hooks are always added with new versions of WordPress. Keeping track of changes in the core
code from version to version can help you stay on top of new hooks that you can use within your
plugins.

 Searching for Hooks in the Core Code

 As a plugin developer, you should become familiar with the core WordPress code. Looking for
hooks is a great way to start familiarizing yourself with how WordPress works. There ’ s no better
process for understanding how PHP code works than actually looking at the code and following
each statement made within the code.

 An easy way to search for hooks is to open a fi le from the wordpress folder in your preferred text
editor and run a text search for one of four function names.

 do_action

 do_action_ref_array

 apply_filters

 apply_filters_ref_array

 Those are the functions you learned to use earlier in the chapter. Each function creates a hook, so
by searching for one of those strings, you can fi nd new hooks in WordPress.

 Variable Hooks

 When searching for hooks throughout the core WordPress code, you will come across what ’ s known
as “ variable hooks. ” Normally, hook names are a static string of text. However, variable hook
names change based on a specifi c variable.

 A good example of this is the load - $pagenow action hook. The $pagenow variable changes depending
on the WordPress admin page currently viewed. The hook looks like the following in the core code.

 < ?php
do_action(“load-$pagenow”);
? >

 The $pagenow variable will become the page name being viewed. For example, the hook for the new
post page in the admin would be load - post - new.php and the hook on the edit posts screen would
be load - post.php . This enables plugins to run code only for specifi c page views in the admin.

 WordPress has several action and fi lter hooks with variables as part of the hook name. Generally,
these hook names change to provide context to plugin developers so that they can execute code only
when specifi c circumstances are met. It is important to keep this in mind when searching for just the
right hook to use in your plugin.

 Hook Reference Lists

 Although searching for hooks within the core code can be benefi cial to your learning experience,
sometimes you may fi nd it easier to access some of the publicly available reference lists on the Web.
These lists can sometimes save you time and may also have descriptions about the hook.

➤

➤

➤

➤

 WordPress has both an offi cial action and fi lter hook reference list in its Codex.

 http://codex.wordpress.org/Plugin_API/Action_Reference

 http://codex.wordpress.org/Plugin_API/Filter_Reference

 Chapter 18, “ The Developer Toolbox, ” covers more materials and tools to help plugin developers.

 SUMMARY

 Hooks are the most important aspect of building plugins for WordPress. Each time you start a new
plugin project, you hook your plugin ’ s functions into the WordPress action and fi lter hooks. You can
use everything you learned throughout this chapter in the following chapters of the book because
hooks play such an integral part in plugin development.

 Now that you can fully grasp how hooks work, it ’ s time to start building plugins.

➤

➤

Summary ❘ 57

Integrating in WordPress

 WHAT ’ S IN THIS CHAPTER?

 Creating menus and submenus

 Creating widgets and dashboard widgets

 Defi ning meta boxes for content

 Designing and styling your plugin

 Integrating your plugin in WordPress is a critical step in building a professional plugin.
WordPress features many different ways to integrate your plugin including adding top - level
and submenu items, creating widgets and dashboard widgets, and adding meta boxes to your
content screens.

 In this chapter you learn how to properly integrate your plugin into the various areas of
WordPress. You also learn the proper design and styles available that your plugins can take
advantage of to provide your users with a consistent user - interface experience.

 ADDING MENUS AND SUBMENUS

 Many plugins you create need some type of menu item, which generally links to your plugin ’ s
settings page where the user can confi gure your plugin options. WordPress features two
methods for adding a plugin menu: a top - level menu or a submenu item.

➤

➤

➤

➤

 4

60 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 Creating a Top - Level Menu

 The fi rst menu method for your plugin to explore in WordPress is a new top - level menu, which is
added to the admin dashboard menu list. For example, Settings is a top - level menu. A top - level
menu is common practice for any plugin that needs multiple option pages. To register a
top - level menu, you use the add_menu_page() function.

 < ?php add_menu_page(page_title, menu_title, capability, menu_slug, function,
 icon_url, position); ? >

 The add_menu_page() function accepts the following parameters:

 page_title — The title of the page as shown in the <title> tags

 menu_title — The name of your menu displayed on the dashboard

 capability — Minimum capability required to view the menu

 menu_slug — Slug name to refer to the menu; should be a unique name

 function : Function to be called to display the page content for the item

 icon_url — URL to a custom image to use as the Menu icon

 position — Location in the menu order where it should appear

 Now create a new menu for your plugin to see the menu process in action. Use the admin_menu
action hook to trigger your menu code. This is the appropriate hook to use whenever you create
menus and submenus in your plugins.

 < ?php
add_action(‘admin_menu’, ‘boj_menuexample_create_menu’);

function boj_menuexample_create_menu() {

 //create custom top-level menu
 add_menu_page(‘My Plugin Settings Page’, ‘Menu Example Settings’,
 ‘manage_options’, __FILE__, ‘boj_menuexample_settings_page’,
 plugins_url(‘/images/wp-icon.png’, __FILE__));

}

? >

 As you can see, the admin_menu action hook calls your custom
 boj_menuexample_create_menu() function. Next you need to call the
 add_menu_page() function to register the custom menu in WordPress. Set
the name of your menu to Menu Example Settings, which requires that the user
has manage_options capabilities (that is, is an administrator), and even set
a custom icon located in the /images folder of your plugin, as shown in
Figure 4 - 1.

➤

➤

➤

➤

➤

➤

➤

 FIGURE 4 - 1

 Adding a Submenu

 Now that you have a new top - level menu created, create some submenus for it, which are menu
items listed below your top - level menu. For example, Settings is a top - level menu whereas General,
listed below Settings, is a submenu of the Settings menu. To register a submenu, use the add_
submenu_page() function.

 < ?php add_submenu_page(parent_slug, page_title, menu_title, capability,
 menu_slug, function); ? >

 The add_submenu_page() function accepts the following parameters:

 parent_slug : Slug name for the parent menu (menu_slug previously defi ned)

 page_title : The title of the page as shown in the <title> tags

 menu_title : The name of your submenu displayed on the dashboard

 capability : Minimum capability required to view the submenu

 menu_slug : Slug name to refer to the submenu; should be a unique name

 function : Function to be called to display the page content for the item

 Now that you know how submenus are defi ned, you can add one to your custom top - level menu:

 < ?php
add_action(‘admin_menu’, ‘boj_menuexample_create_menu’);

function boj_menuexample_create_menu() {

 //create custom top-level menu
 add_menu_page(‘My Plugin Settings Page’, ‘Menu Example Settings’,
 ‘manage_options’, __FILE__, ‘boj_menuexample_settings_page’,
 plugins_url(‘/images/wp-icon.png’, __FILE__));

 //create submenu items
 add_submenu_page(__FILE__, ‘About My Plugin’, ‘About’, ‘manage_options’,
 __FILE__.’_about’, boj_menuexample_about_page);
 add_submenu_page(__FILE__, ‘Help with My Plugin’, ‘Help’, ‘manage_options’,
 __FILE__.’_help’, boj_menuexample_help_page);
 add_submenu_page(__FILE__, ‘Uninstall My Plugin’, ‘Uninstall’, ‘manage_
options’,
 __FILE__.’_uninstall’, boj_menuexample_uninstall_page);

}
? >

 Code snippet boj - custom - menu - plugin.php

➤

➤

➤

➤

➤

➤

 Menus are a common feature in WordPress plugins and are generally expected
by the user. It ’ s a good idea to mention where your plugin settings can be found
in the plugin description and documentation.

Adding Menus and Submenus ❘ 61

62 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 The preceding code creates three submenus for your custom top - level menu:
About, Help, and Uninstall, as shown in Figure 4 - 2. Each of these submenu
items link to a different custom function that can contain any code you want to
use for that submenu page.

 Adding a Menu Item to an Existing Menu

 If your plugin requires only a single options page, you do not need to create a
custom top - level menu. Instead you can simply add a submenu to an existing
menu, such as the Settings menu.

 WordPress features many different functions to add submenus to the existing
default menus in WordPress. One of these functions is the add_options_page()
function. Now explore how the add_options_page() function works to add a
submenu item to the Settings menu.

 < ?php add_options_page(page_title, menu_title, capability, menu_
slug, function);? >

 The add_options_page() function accepts the following parameters:

 page_title — The title of the page as shown in the <title> tags

 menu_title — The name of your submenu displayed on the dashboard

 capability — Minimum capability required to view the submenu

 menu_slug — Slug name to refer to the submenu; should be a unique name

 function — Function to be called to display the page content for the item

 Now add a submenu item to the Settings menu:

 < ?php
add_action(‘admin_menu’, ‘boj_menuexample_create_menu’);

function boj_menuexample_create_menu() {

 //create a submenu under Settings
 add_options_page(‘My Plugin Settings Page’, ‘Menu Example Settings’,
 ‘manage_options’, __FILE__, ‘boj_menuexample_settings_page’);

}
? >

 Code snippet boj - options - page - plugin.php

 The preceding code adds a submenu labeled Menu Example Settings under the Settings menu,
as shown in Figure 4 - 3. Set the page title to My Plugin Settings Page, set the capability to

➤

➤

➤

➤

➤

 FIGURE 4 - 2

 manage_options so that only administrators can view it, and set the function
 boj_menuexample_settings_page() to be called when the submenu is clicked.

 Following is a list of all available submenu functions in WordPress.

 add_dashboard_page — Adds a submenu to the Dashboard menu

 add_posts_page — Adds a submenu to the Posts menu

 add_media_page — Adds a submenu to the Media menu

 add_links_page — Adds a submenu to the Links menu

 add_pages_page — Adds a submenu to the Pages menu

 add_comments_page — Adds a submenu to the Comments page

 add_theme_page — Adds a submenu to the Appearance menu

 add_plugins_page — Adds a submenu to the Plugins menu

 add_users_page — Adds a submenu to the Users menu

 add_management_page — Adds a submenu to the Tools menu

 add_options_page — Adds a submenu to the Settings menu

 To use any of these functions, simply swap out the function name in the code
shown earlier.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 4 - 3

 If your plugin requires only a single options page, it ’ s best to add it as a submenu
to an existing menu. If you require more than one, create a custom top - level menu.

 CREATING WIDGETS

 Widgets are a great way to give the users of your plugin an easy method to display your plugin
information or data. WordPress features a Widgets API for creating and interacting with widgets.
In this section you explore how to create widgets, add and save widget options, and display plugin
information in the widget.

 Creating a Widget

 You create all widgets in WordPress using the WP_Widget class. To understand how the widget class
works, it ’ s helpful to look at an overview of the class:

 < ?php
class My_Widget extends WP_Widget {

 function My_Widget() {
 // processes the widget
 }

 function form($instance) {

Creating Widgets ❘ 63

64 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 // displays the widget form in the admin dashboard
 }

 function update($new_instance, $old_instance) {
 // process widget options to save
 }

 function widget($args, $instance) {
 // displays the widget
 }

}
? >

 As you can see, the WP_Widget class features multiple functions for your widget, each with a specifi c
purpose.

 Now it ’ s time to create a widget for your plugin. For this fi rst widget, you create a simple text - based
widget to save and display your favorite movie and song. It is a simple example that demonstrates
how to save text data in a WordPress widget.

 To start you use the widgets_init action hook. This hook is triggered after the default widgets
have been registered in WordPress.

 < ?php
// use widgets_init action hook to execute custom function
add_action(‘widgets_init’, ‘boj_widgetexample_register_widgets’);

 //register our widget
function boj_widgetexample_register_widgets() {
 register_widget(‘boj_widgetexample_widget_my_info’);
}
? >

 The widgets_init hook triggers the custom function to register your widget, in this case boj_
widgetexample_register_widgets() . Next you use the register_widget() function to register
your new widget; in this example you register the class name as boj_widgetexample_widget_
my_info() . This function accepts one parameter, and that is the class name that will extend
 WP_Widget . The widget class name can be anything, but it must be unique and should always be
descriptive of your widget. You can also register as many widgets as needed using this function.

 Now that you ’ ve registered your widget, it ’ s time to set up the widget class.

 < ?php
//boj_widgetexample_widget_my_info class
class boj_widgetexample_widget_my_info extends WP_Widget {
? >

 You need to extend the WP_Widget class by creating a new class with the unique name you defi ned
when you registered your widget. Now that you ’ ve defi ned the class, it ’ s time to start building the
widget.

 < ?php
 //process the new widget
 function boj_widgetexample_widget_my_info() {
 $widget_ops = array(
 ‘classname’ = > ‘boj_widgetexample_widget_class’,
 ‘description’ = > ‘Display a user\’s favorite movie and song.’
);
 $this- > WP_Widget(‘boj_widgetexample_widget_my_info’, ‘My Info Widget’,
 $widget_ops);
 }
? >

 First, make a new array to store your widget options called $widget_ops . This array can hold
the classname and description options. The classname option is the class name added to the
 < li > element of the widget. Sidebars, by default, display all widgets in an unordered list. Each
individual widget is a list item in that list, so by adding a custom classname and ID , you can easily
create custom styles and designs for your widget. The description displays under the widget on the
Appearance ➪ Widgets screen and is used to describe your widgets function.

 After building your options array, you then pass those values to WP_Widget . The fi rst value you pass
is the ID for the list item of your widget, in this case boj_widgetexample_widget_my_info() . The
second value to pass is the widget name displayed in the Widgets screen. The widget name should be
a short and sweet name describing your widget. The fi nal value to pass is your array of options you
set earlier.

 Next you need to create your widgets settings form. This widget accepts three values: Title, Favorite
movie, and Favorite song.

 < ?php
 //build the widget settings form
 function form($instance) {
 $defaults = array(‘title’ = > ‘My Info’, ‘movie’ = > ‘’, ‘song’ = > ‘’);
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance[‘title’];
 $movie = $instance[‘movie’];
 $song = $instance[‘song’];
 ? >
 < p > Title: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘title’); ? > ” type=”text”
 value=” < ?php echo esc_attr($title); ? > ” / > < /p >
 < p > Favorite Movie: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘movie’); ? > ” type=”text”
 value=” < ?php echo esc_attr($movie); ? > ” / > < /p >
 < p > Favorite Song: < textarea class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘song’); ? > ” / >
 < ?php echo esc_attr($song); ? > < /textarea > < /p >
 < ?php
 }
? >

 First, you create a $defaults variable to set the default values of each option. In this example, you
set only the default title to My Info. Next pull in the instance values; that is, the widget settings that

Creating Widgets ❘ 65

66 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

have been saved. If this is a new widget and was just added to a sidebar, there won ’ t be any settings
saved, so this value will be empty.

 The fi nal part to your widget settings is to display the form elements for entering the widget
information. Use a standard HTML input text fi eld for all three of your fi elds: title, movie, and
song. You ’ ll notice you don ’ t need to include the < form > tags or submit button; the widget class
handles that for you. Also notice you use the esc_attr() function to escape the saved value prior to
displaying it in the fi eld.

 Now it ’ s time to save your widget settings using the update function of the widget class.

 < ?php
 //save the widget settings
 function update($new_instance, $old_instance) {
 $instance = $old_instance;
 $instance[‘title’] = strip_tags($new_instance[‘title’]);
 $instance[‘movie’] = strip_tags($new_instance[‘movie’]);
 $instance[‘song’] = strip_tags($new_instance[‘song’]);

 return $instance;
 }
? >

 As you can see, the widget class handles all the saving for you. You simply pass in the $new_
instance values for each of your widget settings. Always be sure to sanitize any user-entered data,
in this case using the strip_tags() PHP function.

 The fi nal piece to the widget puzzle is displaying your widget in the sidebar. To do this you use the
 widget function of the widget class.

 < ?php
 //display the widget
 function widget($args, $instance) {
 extract($args);

 echo $before_widget;
 $title = apply_filters(‘widget_title’, $instance[‘title’]);
 $movie = empty($instance[‘movie’]) ? ‘ & nbsp;’ : $instance[‘movie’];
 $song = empty($instance[‘song’]) ? ‘ & nbsp;’ : $instance[‘song’];

 if (!empty($title)) { echo $before_title . $title . $after_title; };
 echo ‘ < p > Fav Movie: ‘ . $movie . ‘ < /p > ’;
 echo ‘ < p > Fav Song: ‘ . $song . ‘ < /p > ’;
 echo $after_widget;
 }
? >

 The fi rst step is to extract the $args parameter. This variable holds global theme values such as
 $before_widget and $after_widget . These values can be defi ned when a sidebar is registered and
can be used to customize the code that wraps your widget, such as adding a custom < div > tag.

 Next you set the $title variable for the title of your widget. You need to apply the widget_title
fi lter hook to the title. This enables other developers to modify the display of the widget title if

needed. To set the $movie and $song variables, use a PHP ternary
operator. In plain English this line breaks down as follows: If
 $movie is empty, set it to ‘ & nbsp; ’ , if it ’ s not empty set it to
 $instance[‘ movie ’] .

 Now that you ’ ve defi ned all your widget setting variables and
populated their values, it ’ s time to display them. First, display
the $title variable. It ’ s always important to wrap this value
with the $before_title and $after_title variables. These
global variables can also be set by developers when registering a
sidebar. After displaying the $title value, display the favorite
movie and song values. Finally, remember to end your widget
display with the $after_widget global value.

 Congratulations! You just created a WordPress widget! Now you
can add your newly created widget and fi ll in the widget settings,
as shown in Figure 4 - 4.

 Your new widget then displays in your sidebar, as shown in Figure 4 - 5.

 Now review the full widget code that ’ s put together:

 < ?php
/*
Plugin Name: Widget Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to create widgets in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

// use widgets_init action hook to execute custom function
add_action(‘widgets_init’, ‘boj_widgetexample_register_widgets’);

 //register our widget
function boj_widgetexample_register_widgets() {
 register_widget(‘boj_widgetexample_widget_my_info’);
}

//boj_widget_my_info class
class boj_widgetexample_widget_my_info extends WP_Widget {

 //process the new widget
 function boj_widgetexample_widget_my_info() {
 $widget_ops = array(
 ‘classname’ = > ‘boj_widgetexample_widget_class’,
 ‘description’ = > ‘Display a user\’s favorite movie and song.’
);
 $this- > WP_Widget(‘boj_widgetexample_widget_my_info’, ‘My Info Widget’,
 $widget_ops);
 }

 //build the widget settings form

 FIGURE 4 - 5

 FIGURE 4 - 4

Creating Widgets ❘ 67

68 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 function form($instance) {
 $defaults = array(‘title’ = > ‘My Info’, ‘movie’ = > ‘’, ‘song’ = > ‘’);
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance[‘title’];
 $movie = $instance[‘movie’];
 $song = $instance[‘song’];
 ? >
 < p > Title: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘title’); ? > ”
 type=”text” value=” < ?php echo esc_attr($title); ? > ” / > < /p >
 < p > Favorite Movie: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘movie’); ? > ”
 type=”text” value=” < ?php echo esc_attr($movie); ? > ” / > < /p >
 < p > Favorite Song: < textarea class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘song’); ? > ” / >
 < ?php echo esc_attr($song); ? > < /textarea > < /p >
 < ?php
 }

 //save the widget settings
 function update($new_instance, $old_instance) {
 $instance = $old_instance;
 $instance[‘title’] = strip_tags($new_instance[‘title’]);
 $instance[‘movie’] = strip_tags($new_instance[‘movie’]);
 $instance[‘song’] = strip_tags($new_instance[‘song’]);

 return $instance;
 }

 //display the widget
 function widget($args, $instance) {
 extract($args);

 echo $before_widget;
 $title = apply_filters(‘widget_title’, $instance[‘title’]);
 $movie = empty($instance[‘movie’]) ? ‘ & nbsp;’ : $instance[‘movie’];
 $song = empty($instance[‘song’]) ? ‘ & nbsp;’ : $instance[‘song’];

 if (!empty($title)) { echo $before_title . $title . $after_title; };
 echo ‘ < p > Fav Movie: ‘ . $movie . ‘ < /p > ’;
 echo ‘ < p > Fav Song: ‘ . $song . ‘ < /p > ’;
 echo $after_widget;
 }
}
? >

 Code snippet boj - widget - plugin.php

 Advanced Widget

 Now that you have a solid understanding of how widgets work, you can create a more advanced
widget. In this example, you create a widget that retrieves an RSS feed and displays its results. You

also use different types of form elements for your widget options. First, you need to register your
new widget.

 < ?php
// use widgets_init action hook to execute custom function
add_action(‘widgets_init’, ‘boj_awe_register_widgets’);

//register our widget
function boj_awe_register_widgets() {
 register_widget(‘boj_awe_widget’);
}
? >

 Register your new widget as boj_awe_widget . Now that your widget is registered, it ’ s time to
extend the WP_Widget class for your new widget.

 < ?php
//boj_widget_my_info class
class boj_awe_widget extends WP_Widget {

 //process the new widget
 function boj_awe_widget() {

 $widget_ops = array(
 ‘classname’ = > ‘boj_awe_widget_class’,
 ‘description’ = > ‘Display an RSS feed with options.’
);

 $this- > WP_Widget(‘boj_awe_widget’, ‘Advanced RSS Widget’, $widget_ops);
 }
? >

 As before, you set the class name and description of your new widget. In this example, the new
widget title is set to Advanced RSS Widget. Next create the widget options.

 < ?php
 //build the widget settings form
 function form($instance) {
 $defaults = array(
 ‘title’ = > ‘RSS Feed’,
 ‘rss_feed’ = > ‘http://strangework.com/feed’,
 ‘rss_items’ = > ‘2’
);
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance[‘title’];
 $rss_feed = $instance[‘rss_feed’];
 $rss_items = $instance[‘rss_items’];
 $rss_date = $instance[‘rss_date’];
 $rss_summary = $instance[‘rss_summary’];
 ? >
 < p > Title: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘title’); ? > ”

Creating Widgets ❘ 69

70 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 type=”text” value=” < ?php echo esc_attr($title); ? > ” / > < /p >
 < p > RSS Feed: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘rss_feed’); ? > ”
 type=”text” value=” < ?php echo esc_attr($rss_feed); ? > ” / > < /p >
 < p > Items to Display:
 < select name=” < ?php echo $this- > get_field_name(‘rss_items’); ? > ” >
 < option value=”1” < ?php selected($rss_items, 1); ? > > 1 < /option >
 < option value=”2” < ?php selected($rss_items, 2); ? > > 2 < /option >
 < option value=”3” < ?php selected($rss_items, 3); ? > > 3 < /option >
 < option value=”4” < ?php selected($rss_items, 4); ? > > 4 < /option >
 < option value=”5” < ?php selected($rss_items, 5); ? > > 5 < /option >
 < /select >
 < /p >
 < p > Show Date?: < input name=”
 < ?php echo $this- > get_field_name(‘rss_date’); ? > ”
 type=”checkbox” < ?php checked($rss_date, ‘on’); ? > / > < /p >
 < p > Show Summary?: < input name=”
 < ?php echo $this- > get_field_name(‘rss_summary’); ? > ”
 type=”checkbox” < ?php checked($rss_summary, ‘on’); ? > / > < /p >
 < ?php
 }
? >

 This widget features fi ve options enabling the user to set the title, RSS feed, items to display, and
whether a date and summary of each post will be displayed. The title and RSS feed options are
standard text fi elds.

 The items to display option is an HTML select list. Notice the use of the selected() function,
which is an extremely useful tool for comparing two values in a select fi eld to determine if that
option is selected. If the option value compared is the option that is saved, WordPress adds
 selected= ‘ selected ’ value to the option fi eld, which makes it the selected option.

 The show date and show summary options are both check box form fi elds. Here you use the
 checked() WordPress function. This function works just like the selected() function in that
it compares two values and determines if they are identical, but the difference is the checked()
function outputs checked= ‘ checked ’ , which makes the option checked.

 Now that your widget form is set up, it ’ s time to save your widget options.

 < ?php
 //save the widget settings
 function update($new_instance, $old_instance) {
 $instance = $old_instance;
 $instance[‘title’] = strip_tags($new_instance[‘title’]);
 $instance[‘rss_feed’] = strip_tags($new_instance[‘rss_feed’]);
 $instance[‘rss_items’] = strip_tags($new_instance[‘rss_items’]);
 $instance[‘rss_date’] = strip_tags($new_instance[‘rss_date’]);
 $instance[‘rss_summary’] = strip_tags($new_instance[‘rss_summary’]);

 return $instance;
 }
? >

 As always make sure you sanitize the widget option values using the proper sanitizing function,
in this case strip_tags() . Now that the widget options are saved, it ’ s time to display the widget
based on the set options.

 < ?php
 //display the widget
 function widget($args, $instance) {
 extract($args);

 echo $before_widget;

 //load the widget settings
 $title = apply_filters(‘widget_title’, $instance[‘title’]);
 $rss_feed = empty($instance[‘rss_feed’]) ? ‘’ : $instance[‘rss_feed’];
 $rss_items = empty($instance[‘rss_items’]) ? 2 : $instance[‘rss_items’];
 $rss_date = empty($instance[‘rss_date’]) ? 0 : 1;
 $rss_summary = empty($instance[‘rss_summary’]) ? 0 : 1;

 if (!empty($title)) { echo $before_title . $title . $after_title; };

 if ($rss_feed) {
 //display the RSS feed
 wp_widget_rss_output(array(
 ‘url’ = > $rss_feed,
 ‘title’ = > $title,
 ‘items’ = > $rss_items,
 ‘show_summary’ = > $rss_summary,
 ‘show_author’ = > 0,
 ‘show_date’ = > $rss_date
));
 }

 echo $after_widget;
 }
? >

 First, you need to load all the widget options to determine how the RSS feed should display. The
defaults for each option are set using a ternary operator. For example, if the RSS date option is
checked by the user, the $rss_date variable will be set to 1 ; if not it will be set to 0 .

 You have just created an advanced RSS widget in WordPress! This widget is a great example of how
to create and set different types of options and use them appropriately in your widget ’ s display. Now
look at the full source code for the widget.

 < ?php
/*
Plugin Name: Advanced Widget Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to create widgets in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2

Creating Widgets ❘ 71

72 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

*/

// use widgets_init action hook to execute custom function
add_action(‘widgets_init’, ‘boj_awe_register_widgets’);

//register our widget
function boj_awe_register_widgets() {
 register_widget(‘boj_awe_widget’);
}

//boj_widget_my_info class
class boj_awe_widget extends WP_Widget {

 //process the new widget
 function boj_awe_widget() {

 $widget_ops = array(
 ‘classname’ = > ‘boj_awe_widget_class’,
 ‘description’ = > ‘Display an RSS feed with options.’
);

 $this- > WP_Widget(‘boj_awe_widget’, ‘Advanced RSS Widget’, $widget_ops);
 }

 //build the widget settings form
 function form($instance) {
 $defaults = array(
 ‘title’ = > ‘RSS Feed’,
 ‘rss_feed’ = > ‘http://strangework.com/feed’,
 ‘rss_items’ = > ‘2’
);
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance[‘title’];
 $rss_feed = $instance[‘rss_feed’];
 $rss_items = $instance[‘rss_items’];
 $rss_date = $instance[‘rss_date’];
 $rss_summary = $instance[‘rss_summary’];
 ? >
 < p > Title: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘title’); ? > ”
 type=”text” value=” < ?php echo esc_attr($title); ? > ” / > < /p >
 < p > RSS Feed: < input class=”widefat” name=”
 < ?php echo $this- > get_field_name(‘rss_feed’); ? > ”
 type=”text” value=” < ?php echo esc_attr($rss_feed); ? > ” / > < /p >
 < p > Items to Display:
 < select name=” < ?php echo $this- > get_field_name(‘rss_items’); ? > ” >
 < option value=”1” < ?php selected($rss_items, 1); ? > > 1 < /option >
 < option value=”2” < ?php selected($rss_items, 2); ? > > 2 < /option >
 < option value=”3” < ?php selected($rss_items, 3); ? > > 3 < /option >
 < option value=”4” < ?php selected($rss_items, 4); ? > > 4 < /option >
 < option value=”5” < ?php selected($rss_items, 5); ? > > 5 < /option >
 < /select >
 < /p >
 < p > Show Date?: < input name=”

 < ?php echo $this- > get_field_name(‘rss_date’); ? > ”
 type=”checkbox” < ?php checked($rss_date, ‘on’); ? > / > < /p >
 < p > Show Summary?: < input name=”
 < ?php echo $this- > get_field_name(‘rss_summary’); ? > ”
 type=”checkbox” < ?php checked($rss_summary, ‘on’); ? > / > < /p >
 < ?php
 }

 //save the widget settings
 function update($new_instance, $old_instance) {
 $instance = $old_instance;
 $instance[‘title’] = strip_tags($new_instance[‘title’]);
 $instance[‘rss_feed’] = strip_tags($new_instance[‘rss_feed’]);
 $instance[‘rss_items’] = strip_tags($new_instance[‘rss_items’]);
 $instance[‘rss_date’] = strip_tags($new_instance[‘rss_date’]);
 $instance[‘rss_summary’] = strip_tags($new_instance[‘rss_summary’]);

 return $instance;
 }

 //display the widget
 function widget($args, $instance) {
 extract($args);

 echo $before_widget;

 //load the widget settings
 $title = apply_filters(‘widget_title’, $instance[‘title’]);
 $rss_feed = empty($instance[‘rss_feed’]) ? ‘’ : $instance[‘rss_feed’];
 $rss_items = empty($instance[‘rss_items’]) ? 2 : $instance[‘rss_items’];
 $rss_date = empty($instance[‘rss_date’]) ? 0 : 1;
 $rss_summary = empty($instance[‘rss_summary’]) ? 0 : 1;

 if (!empty($title)) { echo $before_title . $title . $after_title; };

 if ($rss_feed) {
 //display the RSS feed
 wp_widget_rss_output(array(
 ‘url’ = > $rss_feed,
 ‘title’ = > $title,
 ‘items’ = > $rss_items,
 ‘show_summary’ = > $rss_summary,
 ‘show_author’ = > 0,
 ‘show_date’ = > $rss_date
));
 }

 echo $after_widget;
 }
}
? >

 Code snippet boj - advanced - rss - widget.php

Creating Widgets ❘ 73

74 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 Creating Dashboard Widgets

 WordPress also features a dashboard widget API. You can use this API to create custom widgets on
the WordPress dashboard screen.

 To create your dashboard widget, you use the wp_add_dashboard_widget() function. Here ’ s
how to use this function to create a dashboard widget:

 < ?php wp_add_dashboard_widget(widget_id, widget_name, callback,
 control_callback); ? >

 The wp_add_dashboard_widget() function accepts the following parameters:

 widget_id — The CSS ID added to the widget DIV element

 widget_name — The name of your widget displayed in its heading

 callback — Function to be called to display your widget

 control_callback — Function to be called to handle for elements and submission

 Following are some different examples. First, you create a simple dashboard widget that displays a
piece of content to the user.

 To create a dashboard widget, use the wp_dashboard_setup action hook. This hook is executed
directly after the default dashboard widgets have been initialized, but prior to them being displayed.

 < ?php
add_action(‘wp_dashboard_setup’, ‘boj_dashboard_example_widgets’);

function boj_dashboard_example_widgets() {

 //create a custom dashboard widget
 wp_add_dashboard_widget(‘dashboard_custom_feed’,
 ‘My Plugin Information’, ‘boj_dashboard_example_display’);

}
? >

 The wp_dashboard_setup hook can call your custom boj_dashboard_example_widgets()
function. Next use the wp_add_dashboard_widget() function to register your new dashboard
widget. Set the widget title to My Plugin Information, and call the custom function boj_dashboard_
example_display() . Now that your dashboard widget is registered, you need to set up the custom
function to display a message to your users.

 < ?php
function boj_dashboard_example_display()
{
 echo ‘ < p > Please contact support@example.com to report bugs. < /p > ’;
}
? >

➤

➤

➤

➤

 You now have a custom dashboard widget with a simple
message displayed to your users, as shown in Figure 4 - 6.
The Dashboard Widget API automatically makes your
widget draggable, collapsible, and even adds your widget
to the Screen Options tab so that users can easily hide it if
they choose.

 Now review the widget code in its entirety:

 < ?php
/*
Plugin Name: Dashboard Widget Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to create dashboard widgets in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘wp_dashboard_setup’, ‘boj_dashboard_example_widgets’);

function boj_dashboard_example_widgets() {

 //create a custom dashboard widget
 wp_add_dashboard_widget(‘dashboard_custom_feed’,
 ‘My Plugin Information’, ‘boj_dashboard_example_display’);

}

function boj_dashboard_example_display()
{
 echo ‘ < p > Please contact support@example.com to report bugs. < /p > ’;
}
? >

 Code snippet boj - dashboard - widget.php

 Creating a Dashboard Widget with Options

 Now that you understand dashboard widgets, you can create a more advanced widget that stores
an option value. Dashboard widgets can store options, making them easily customizable by the user.
If a dashboard widget has any options, you see a Confi gure link display when you hover over the
widget title.

 The dashboard widget in this example enables you to set a custom RSS feed URL and display the
contents of that feed.

 < ?php
add_action(‘wp_dashboard_setup’, ‘boj_dashboard_example_widgets’);

function boj_dashboard_example_widgets() {

 FIGURE 4 - 6

Creating Widgets ❘ 75

76 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 //create a custom dashboard widget
 wp_add_dashboard_widget(‘dashboard_custom_feed’,
 ‘My Plugin Information’, ‘boj_dashboard_example_display’,
 ‘boj_dashboard_example_setup’);

}
? >

 Notice the wp_add_dashboard_widget() function has the fourth parameter set, in this example
 boj_dashboard_example_setup() , which is the control callback. This is the function that displays
your widget setting fi eld and saves the data entered as an option for your widget. Next you need to
create the boj_dashboard_example_display() function to display the custom RSS feed in your
widget.

 < ?php
function boj_dashboard_example_display()
{
 //load our widget option
 $boj_option = get_option(‘boj_dashboard_widget_rss ‘);

 //if option is empty set a default
 $boj_rss_feed = ($boj_option) ? $boj_option : ‘http://wordpress.org/news/feed/’;

 //retrieve the RSS feed and display it
 echo ‘ < div class=”rss-widget” > ’;

 wp_widget_rss_output(array(
 ‘url’ = > $boj_rss_feed,
 ‘title’ = > ‘RSS Feed News’,
 ‘items’ = > 2,
 ‘show_summary’ = > 1,
 ‘show_author’ = > 0,
 ‘show_date’ = > 1
));

 echo ‘ < /div > ’;
}
? >

 The fi rst two lines load the RSS feed saved as an option in the widget. Chapter 7, “ Plugin Settings, ”
covers plugin settings and options in more detail. Next the widget uses the wp_widget_rss_
output() function to retrieve the RSS feed and display it. This handy little function is great for
retrieving and displaying RSS feeds in WordPress. The widget defi nes the RSS URL, sets the title to
RSS Feed News, sets the number of posts to show to 2, and includes a few other options.

 Now that you have the widget display, you need to create the control callback function boj_
dashboard_example_setup() . This function adds the form fi eld to your widget and can also save
the value entered by the user.

 < ?php
function boj_dashboard_example_setup() {

 //check if option is set before saving
 if (isset($_POST[‘boj_rss_feed’])) {
 //retrieve the option value from the form
 $boj_rss_feed = esc_url_raw($_POST[‘boj_rss_feed’]);

 //save the value as an option
 update_option(‘boj_dashboard_widget_rss’, $boj_rss_feed);
 }

 //load the saved feed if it exists
 $boj_rss_feed = get_option(‘boj_dashboard_widget_rss ‘);

 ? >
 < label for=”feed” >
 RSS Feed URL: < input type=”text” name=”boj_rss_feed” id=”boj_rss_feed”
 value=” < ?php echo esc_url($boj_rss_feed); ? > ” size=”50” / >
 < /label >
 < ?php
}
? >

 The fi rst task the function handles is saving the widget option. You should always check to verify the
 POST value exists prior to saving it using the isset() PHP function. Next you set the value of
 $_POST[‘ boj_rss_feed ’] to the $boj_rss_feed variable. Notice how the POST value is escaped
using esc_url_raw() . This verifi es the value is a properly formatted URL and free from any illegal
characters prior to saving the data. Finally, the widget option is saved using update_option() .

 Now that the widget option is saved, you need to display the widget form fi eld so that your users
can enter in the RSS feed URL they want displayed. First, retrieve the widget option from the
database if it exists, so you can display it in the form fi eld. Next create a simple text input named
 boj_rss_feed . Notice the value is set to $boj_rss_feed , which is storing the RSS feed URL value
entered by the user.

 You now have a custom dashboard widget that stores a custom RSS feed URL and displays the latest
two posts to the user, as shown in Figure 4 - 7!

 FIGURE 4 - 7

Creating Widgets ❘ 77

78 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 Now look at the full source for the custom RSS feed dashboard widget:

 < ?php
/*
Plugin Name: RSS Dashboard Widget Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to create dashboard widgets in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘wp_dashboard_setup’, ‘boj_dashboard_example_widgets’);

function boj_dashboard_example_widgets() {

 //create a custom dashboard widget
 wp_add_dashboard_widget(‘dashboard_custom_feed’, ‘My Plugin Information’,
 ‘boj_dashboard_example_display’, ‘boj_dashboard_example_setup’);

}

function boj_dashboard_example_setup() {

 //check if option is set before saving
 if (isset($_POST[‘boj_rss_feed’])) {
 //retrieve the option value from the form
 $boj_rss_feed = esc_url_raw($_POST[‘boj_rss_feed’]);

 //save the value as an option
 update_option(‘boj_dashboard_widget_rss’, $boj_rss_feed);
 }

 //load the saved feed if it exists
 $boj_rss_feed = get_option(‘boj_dashboard_widget_rss ‘);

 ? >
 < label for=”feed” >
 RSS Feed URL: < input type=”text” name=”boj_rss_feed” id=”boj_rss_feed”
 value=” < ?php echo esc_url($boj_rss_feed); ? > ” size=”50” / >
 < /label >
 < ?php
}

function boj_dashboard_example_display()
{
 //load our widget option
 $boj_option = get_option(‘boj_dashboard_widget_rss ‘);

 //if option is empty set a default
 $boj_rss_feed = ($boj_option) ? $boj_option : ‘http://wordpress.org/news/feed/’;

 //retrieve the RSS feed and display it

Meta Boxes ❘ 79

 echo ‘ < div class=”rss-widget” > ’;

 wp_widget_rss_output(array(
 ‘url’ = > $boj_rss_feed,
 ‘title’ = > ‘RSS Feed News’,
 ‘items’ = > 2,
 ‘show_summary’ = > 1,
 ‘show_author’ = > 0,
 ‘show_date’ = > 1
));

 echo ‘ < /div > ’;
}
? >

 Code snippet boj - rss - dashboard - widget.php

 Dashboard widgets are a great way to get important information in front of your
users. The majority of WordPress users log directly into the admin dashboard, so
what better way to feature important information about your plugin?

 META BOXES

 WordPress features multiple sections, or meta boxes, on the post, page, and link manager screens.
These meta boxes enable you to easily add additional data to your content. For example, the Post
Tags meta box enables you set tags for your post.

 Adding a Custom Meta Box

 To create a custom meta box in WordPress, you use the add_meta_box() function. This function
enables you to defi ne all aspects of your meta box. Following is how this function is used:

 < ?php add_meta_box(id, title, callback, page, context, priority,
 callback_args); ? >

 The add_meta_box() function accepts the following parameters:

 id — The CSS ID added to the DIV element that wraps your meta box

 title — The name of your meta box displayed in its heading

 callback — Function to be called to display your meta box

 page — The screen where your meta box should show

 context — The part of the page where the meta box should be shown

 priority — The priority in which your meta box should be shown

 callback_args — Arguments to pass into your callback function

➤

➤

➤

➤

➤

➤

➤

80 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 Saving Meta Box Data

 The real power of meta boxes is saving data
to a post, page, or any type of content in
WordPress. Any data saved against your
content is called metadata. In the WordPress
edit screens, the meta box for custom fi elds
exists by default. Custom fi elds are just a
quick way to save metadata against your
content. Chapter 11, “ Extending Posts, ”
covers metadata in more detail, but you need
understand the concept to save data in your
meta box.

 In this example, you create a meta box on the
post screen to save two fi elds of data against
your post.

 Now you can build a custom meta box for the post screen.

 < ?php
add_action(‘add_meta_boxes’, ‘boj_mbe_create’);

function boj_mbe_create() {

 add_meta_box(‘boj-meta’, ‘My Custom Meta Box’, ‘boj_mbe_function’, ‘post’,
 ‘normal’, ‘high’);

}

function boj_mbe_function() {

 echo ‘Welcome to my meta box!’;

}
? >

 In this example, you create a meta box on the post screen. You use the add_meta_boxes action
hook to trigger your boj_mbe_create() function to add a new meta box. The meta box title is
set to My Custom Meta Box; it calls the boj_mbe_function() for display. Also notice you set the
context parameter to normal and the priority to high . This displays your meta box directly below
the visual editor on your post screen, as shown in Figure 4 - 8.

 FIGURE 4 - 8

 You can add a custom meta box to any custom post type in WordPress by simply
setting the page parameter to the name of your custom post type.

Meta Boxes ❘ 81

 < ?php
add_action(‘add_meta_boxes’, ‘boj_mbe_create’);

function boj_mbe_create() {

 //create a custom meta box
 add_meta_box(‘boj-meta’, ‘My Custom Meta Box’, ‘boj_mbe_function’, ‘post’,
 ‘normal’, ‘high’);

}
? >

 You need to initialize and create your meta box just as you did before. Now create the function to
display the form fi elds.

 < ?php
function boj_mbe_function($post) {

 //retrieve the metadata values if they exist
 $boj_mbe_name = get_post_meta($post- > ID, ‘_boj_mbe_name’, true);
 $boj_mbe_costume = get_post_meta($post- > ID, ‘_boj_mbe_costume’, true);

 echo ‘Please fill out the information below’;
 ? >
 < p > Name: < input type=”text” name=”boj_mbe_name” value=”
 < ?php echo esc_attr($boj_mbe_name); ? > ” / > < /p >
 < p > Costume:
 < select name=”boj_mbe_costume” >
 < option value=”vampire” < ?php selected($boj_mbe_costume, ‘vampire’); ? > >
 Vampire
 < /option >
 < option value=”zombie” < ?php selected($boj_mbe_costume, ‘zombie’); ? > >
 Zombie
 < /option >
 < option value=”smurf” < ?php selected($boj_mbe_costume, ‘smurf’); ? > >
 Smurf
 < /option >
 < /select >
 < /p >
 < ?php

}
? >

 The fi rst thing you should notice is the $post object passed as a parameter to your custom function.
This gives you access to all the post data available in the object, in this case the post ID, to use in
your meta box.

 Now you need to retrieve the two metadata values from WordPress if they exist. To do this use the
 get_post_meta() function. This function accepts three parameters.

82 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 post_id — The ID of the post you want to load metadata from

 key — The unique name of the metadata fi eld you want to load

 single — Whether to return the string as an array (false) or a single string (true)

 If you create a new post, the two metadata values would not exist because they haven ’ t been created
yet. Next in the code, the two form fi elds display. The fi rst is a text fi eld for a name. Notice the
value of the text fi eld is set to $boj_mbe_name , the variable that stores the metadata value you
retrieve, and is escaped using the esc_attr() function for security.

 The second fi eld in the form is an HTML < select > form fi eld. This fi eld has three options to
choose as your costume: Vampire, Zombie, or Smurf. In the example, you use the selected()
function to determine if the item is selected. The meta box form is now complete, and as you can
see there is no need to add a Submit button or form tags. Using use the save_post action hook, the
values are passed to your boj_mbe_save_meta() function as shown here.

 < ?php

//hook to save the meta box data
add_action(‘save_post’, ‘boj_mbe_save_meta’);

function boj_mbe_save_meta($post_id) {

 //verify the metadata is set
 if (isset($_POST[‘boj_mbe_name’])) {

 //save the metadata
 update_post_meta($post_id, ‘_boj_mbe_name’,
 strip_tags($_POST[‘boj_mbe_name’]));
 update_post_meta($post_id, ‘_boj_mbe_costume’,
 strip_tags($_POST[‘boj_mbe_costume’]));

 }

}
? >

 First use the add_action() function to trigger the save_post action hook, which will call your
 boj_mbe_save_meta() function when a post is saved. This function saves the data entered by the
user in your meta box. Notice you pass the $post_id variable to your function as a parameter.
The post ID is used when saving your metadata. It ’ s always a good idea to verify the form fi eld
you want to work with is set prior to doing so, as shown using the isset() PHP function. Finally,
the update_post_meta() function adds or updates the post meta entered in your meta box. This
function accepts four parameters.

 post_id — The ID of the post you want to save metadata to

 meta_key — The unique name of the metadata fi eld you want to save

 meta_value — The value of the metadata fi eld to save

 prev_value — The old value of the metadata fi eld, which differentiates between multiple
fi elds with the same name

➤

➤

➤

➤

➤

➤

➤

Meta Boxes ❘ 83

 In this example you use only the fi rst three parameters because the fourth is optional. You set the
post ID, name of the metadata fi eld, and the value entered in your custom meta box. The form
values are sanitized using the strip_tags() function.

 If your metadata name starts with an underscore, it does not display in the
default custom fi elds meta box in WordPress. This can help eliminate confusion
by the user when entering metadata.

 You have just successfully created a custom meta box that stores data in WordPress! Now review the
full code for your plugin.

 < ?php
/*
Plugin Name: Meta Box Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to create meta boxes in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘add_meta_box’, ‘boj_mbe_create’);

function boj_mbe_create() {

 //create a custom meta box
 add_meta_box(‘boj-meta’, ‘My Custom Meta Box’, ‘boj_mbe_function’,
 ‘post’, ‘normal’, ‘high’);

}

function boj_mbe_function($post) {

 //retrieve the metadata values if they exist
 $boj_mbe_name = get_post_meta($post- > ID, ‘_boj_mbe_name’, true);
 $boj_mbe_costume = get_post_meta($post- > ID, ‘_boj_mbe_costume’, true);

 echo ‘Please fill out the information below’;
 ? >
 < p > Name: < input type=”text” name=”boj_mbe_name” value=”
 < ?php echo esc_attr($boj_mbe_name); ? > ” / > < /p >
 < p > Costume:
 < select name=”boj_mbe_costume” >
 < option value=”vampire” < ?php selected($boj_mbe_costume, ‘vampire’); ? > >
 Vampire
 < / option >
 < option value=”zombie” < ?php selected($boj_mbe_costume, ‘zombie’); ? > >
 Zombie
 < /option >

84 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 < option value=”smurf” < ?php selected($boj_mbe_costume, ‘smurf’); ? > >
 Smurf
 < /option >
 < / select >
 < /p >
 < ?php
}

//hook to save the meta box data
add_action(‘save_post’, ‘boj_mbe_save_meta’);

function boj_mbe_save_meta($post_id) {

 //verify the metadata is set
 if (isset($_POST[‘boj_mbe_name’])) {

 //save the metadata
 update_post_meta($post_id, ‘_boj_mbe_name’,
 strip_tags($_POST[‘boj_mbe_name’]));
 update_post_meta($post_id, ‘_boj_mbe_costume’,
 strip_tags($_POST[‘boj_mbe_costume’]));

 }

}
? >

 Code snippet boj - meta - box.php

 Advanced Meta Box

 Now that you understand how meta boxes work, you can build a more complex one. In this
example, you create a custom meta box that enables the user to select an image from the WordPress
Media Library and save the URL in the meta box.

 First, you use the add_meta_boxes action hook as before to execute the custom function to create
your meta box.

 < ?php
add_action(‘add_meta_boxes’, ‘boj_mbe_image_create’);

function boj_mbe_image_create() {

 //create a custom meta box
 add_meta_box(‘boj-image-meta’, ‘Set Image’, ‘boj_mbe_image_function’,
 ‘post’, ‘normal’, ‘high’);

}
? >

 Using the add_meta_box() function, you can defi ne the settings for your custom meta box. In this
case the meta box is named Set Image and calls the custom boj_mbe_image_function() function.

Meta Boxes ❘ 85

 Now that the meta box has been created, you need to create the function to display meta box content.

 < ?php
function boj_mbe_image_function($post) {

 //retrieve the metadata value if it exists
 $boj_mbe_image = get_post_meta($post- > ID, ‘_boj_mbe_image’, true);
 ? >
 Image < input id=”boj_mbe_image” type=”text” size=”75”
 name=”boj_mbe_image” value=” < ?php echo esc_url($boj_mbe_image); ? > ” / >
 < input id=”upload_image_button” type=”button”
 value=”Media Library Image” class=”button-secondary” / >
 < br / > Enter an image URL or use an image from the Media Library
 < ?php

}
? >

 The fi rst step is to load the metadata value if it exists to the $boj_mbe_image variable. If this meta
value has not been saved, it will be empty. Next display the text form fi eld to enter and display
the image URL. You also create a button that enables the user to select an image from the Media
Library, as shown in Figure 4 - 9.

 FIGURE 4 - 9

 Now call the save_post action hook to execute your custom boj_mbe_image_save_meta()
function to save the meta box data.

 < ?php

//hook to save the meta box data
add_action(‘save_post’, ‘boj_mbe_image_save_meta’);

function boj_mbe_image_save_meta($post_id) {

 //verify the metadata is set
 if (isset($_POST[‘boj_mbe_image’])) {

 //save the metadata
 update_post_meta($post_id, ‘_boj_mbe_image’,
 esc_url_raw($_POST[‘boj_mbe_image’]));

 }

}
? >

86 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 It ’ s a good practice to verify the form fi eld is set prior to retrieving the form fi eld value. If the fi eld
is set, your function can use the update_post_meta() function to save the metadata to the post.
Notice you ’ re using the esc_url_raw() function to sanitize the URL. This can eliminate invalid
characters, remove dangerous characters, and verify the URL has a proper protocol set (http, https,
ftp, and so on).

 Up to this point this is a fairly standard meta box plugin. Now is where the fun begins! To prompt
for the Media Library overlay, you need to use some JavaScript. Create a new fi le named boj - meta -
 image.js . This fi le can contain the JavaScript code that inserts the image URL into your meta box
text fi eld when selected from the Media Library. Now review the code.

jQuery(document).ready(function($) {

 var formfield = null;

 $(‘#upload_image_button’).click(function() {
 $(‘html’).addClass(‘Image’);
 formfield = $(‘#boj_mbe_image’).attr(‘name’);
 tb_show(‘’, ‘media-upload.php?type=image & TB_iframe=true’);
 return false;
 });

 // user inserts file into post.
 //only run custom if user started process using the above process
 // window.send_to_editor(html) is how wp normally handle the received data

 window.original_send_to_editor = window.send_to_editor;
 window.send_to_editor = function(html){
 var fileurl;

 if (formfield != null) {
 fileurl = $(‘img’,html).attr(‘src’);

 $(‘#boj_mbe_image’).val(fileurl);

 tb_remove();

 $(‘html’).removeClass(‘Image’);
 formfield = null;
 } else {
 window.original_send_to_editor(html);
 }
 };

});

 Remember this is JavaScript code and cannot be surrounded by < ?php ? > tags. First, the code opens
the Media overlay when the upload_image_button is clicked, which is the name of the Submit
button in your meta box. The second part of the code takes the image URL and inserts it into the
image URL text fi eld in your form, named boj_mbe_image .

Meta Boxes ❘ 87

 Now that the JavaScript fi le is in place, you need to call this fi le from your plugin.

 < ?php
//script actions with page detection
add_action(‘admin_print_scripts-post.php’, ‘boj_mbe_image_admin_scripts’);
add_action(‘admin_print_scripts-post-new.php’, ‘boj_mbe_image_admin_scripts’);

function boj_mbe_image_admin_scripts() {

 wp_enqueue_script(‘boj-image-upload’,
 plugins_url(‘/boj-meta-box/boj-meta-image.js’),
 array(‘jquery’,’media-upload’,’thickbox’)
);

}
? >

 Use the admin_print_scripts action hook to execute the custom function for including your
JavaScript fi le. Notice how the action hook has - post.php and - post - new.php appended to the
hook name. This is called page detection, so the hook calls only the custom boj_mbe_image_admin_
scripts() function when the user is on the post.php or post - new.php pages in WordPress.

 To insert your JavaScript fi ll to the header of the page, use the wp_enqueue_script() function.
This is the proper way to include JavaScript fi les in the header of WordPress, which Chapter 12,
 “ JavaScript and Ajax, ” covers in more detail.

 The fi nal step is to add the thickbox style using the wp_enqueue_styles() function.

 < ?php

//style actions with page detection
add_action(‘admin_print_styles-post.php’, ‘boj_mbe_image_admin_styles’);
add_action(‘admin_print_styles-post-new.php’, ‘boj_mbe_image_admin_styles’);

function boj_mbe_image_admin_styles() {
 wp_enqueue_style(‘thickbox’);
}
? >

 This includes the thickbox style in the header of the page.

 To set an image in your meta box, just click the Media Library Image button. Next select an image
from the Media Library, and click the Insert into Post button. This inserts the image URL into your meta
box form fi eld. This happens only if the user clicks the Media Library Image button in your meta box.

 Now review the full plugin code.

 BOJ - META - BOX - IMAGE.PHP

< ?php
/*
Plugin Name: Meta Box Media Library Image Example
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: Adds the ability to select an image from the media library
Version: 1.0

88 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘admin_init’, ‘boj_mbe_image_create’);

function boj_mbe_image_create() {

 //create a custom meta box
 add_meta_box(‘boj-image-meta’, ‘Set Image’, ‘boj_mbe_image_function’, ‘post’,
 ‘normal’, ‘high’);

}

function boj_mbe_image_function($post) {

 //retrieve the metadata value if it exists
 $boj_mbe_image = get_post_meta($post- > ID, ‘_boj_mbe_image’, true);
 ? >
 Image < input id=”boj_mbe_image” type=”text” size=”75” name=”boj_mbe_image”
 value=” < ?php echo esc_url($boj_mbe_image); ? > ” / >
 < input id=”upload_image_button” type=”button”
 value=”Media Library Image” class=”button-secondary” / >
 < p > Enter an image URL or use an image from the Media Library < /p >
 < ?php
}

//script actions with page detection
add_action(‘admin_print_scripts-post.php’, ‘boj_mbe_image_admin_scripts’);
add_action(‘admin_print_scripts-post-new.php’, ‘boj_mbe_image_admin_scripts’);

function boj_mbe_image_admin_scripts() {
 wp_enqueue_script(‘boj-image-upload’,
 plugins_url(‘/boj-meta-box/boj-meta-image.js’),
 array(‘jquery’,’media-upload’,’thickbox’));
}

//style actions with page detection
add_action(‘admin_print_styles-post.php’, ‘boj_mbe_image_admin_styles’);
add_action(‘admin_print_styles-post-new.php’, ‘boj_mbe_image_admin_styles’);

function boj_mbe_image_admin_styles() {
 wp_enqueue_style(‘thickbox’);
}

//hook to save the meta box data
add_action(‘save_post’, ‘boj_mbe_image_save_meta’);

function boj_mbe_image_save_meta($post_id) {

 //verify the metadata is set

Meta Boxes ❘ 89

 if (isset($_POST[‘boj_mbe_image’])) {

 //save the metadata
 update_post_meta($post_id, ‘_boj_mbe_image’,
 esc_url($_POST[‘boj_mbe_image’]));

 }

}
? >

 Code snippet boj - meta - box - image.zip

 BOJ - META - IMAGE.JS

jQuery(document).ready(function($) {

 var formfield = null;

 $(‘#upload_image_button’).click(function() {
 $(‘html’).addClass(‘Image’);
 formfield = $(‘#boj_mbe_image’).attr(‘name’);
 tb_show(‘’, ‘media-upload.php?type=image & TB_iframe=true’);
 return false;
 });

 // user inserts file into post.
 // only run custom if user started process using the above process
 // window.send_to_editor(html) is how wp normally handle the received data

 window.original_send_to_editor = window.send_to_editor;
 window.send_to_editor = function(html){
 var fileurl;

 if (formfield != null) {
 fileurl = $(‘img’,html).attr(‘src’);

 $(‘#boj_mbe_image’).val(fileurl);

 tb_remove();

 $(‘html’).removeClass(‘Image’);
 formfield = null;
 } else {
 window.original_send_to_editor(html);
 }
 };

});

 Code snippet boj - meta - box - image.zip

90 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 KEEPING IT CONSISTENT

 They say consistency is one of the principles of good UI design. Creating a plugin for WordPress
is no different, and it ’ s a best practice to make your plugin match the WordPress user interface as
closely as possible. This helps keep the interface consistent for end users and can make your plugin
more professional by providing a solid user experience from the start.

 WordPress features many different styles that you can easily use in your plugin. In this section you
learn how to use the styling available in WordPress for your plugins. To demonstrate, create a simple
plugin with a settings page:

 < ?php
add_action(‘admin_menu’, ‘boj_styling_create_menu’);

function boj_styling_create_menu() {

 //create custom top-level menu
 add_menu_page(‘My Plugin Settings’, ‘Plugin Styling’,
 ‘manage_options’, __FILE__, ‘boj_styling_settings’);

}
? >

 Throughout this section you modify the boj_styling_settings() function.

 Using the WordPress UI

 The most important part of using the WordPress styles is to wrap your plugin in the class wrap div .

 < div class=”wrap” >
 Plugin Page
 < /div >

 This class sets the stage for all admin styling.

 Headings

 WordPress has custom styles available for all heading tags. Now look at how those heading tags display:

 < ?php
function boj_styling_settings() {
 ? >
 < div class=”wrap” >
 < h2 > My Plugin < /h2 >
 < h3 > My Plugin < /h3 >
 < h4 > My Plugin < /h4 >
 < h5 > My Plugin < /h5 >
 < h6 > My Plugin < /h6 >
 < /div >
 < ?php
}
? >

 Each heading is slightly smaller than the previous, as shown in Figure 4 - 10. Notice
there is no < h1 > tag defi ned. The < h1 > tag is reserved for the name of your website
displayed at the top of the admin dashboard. Because of this you should always
use the < h2 > tag for your primary heading.

 Icons

 WordPress features many different icons for each section head. These icons are
also available for use in your plugins. For example, the dashboard header icon is a
house icon.

 < div id=”icon-index” class=”icon32” > < /div >
 < div id=”icon-edit” class=”icon32” > < /div >
 < div id=”icon-upload” class=”icon32” > < /div >
 < div id=”icon-link-manager” class=”icon32” > < /div >
 < div id=”icon-edit-pages” class=”icon32” > < /div >
 < div id=”icon-edit-comments” class=”icon32” > < /div >
 < div id=”icon-themes” class=”icon32” > < /div >
 < div id=”icon-plugins” class=”icon32” > < /div >
 < div id=”icon-users” class=”icon32” > < /div >
 < div id=”icon-tools” class=”icon32” > < /div >
 < div id=”icon-options-general” class=”icon32” > < /div >

 These divs generate the icons shown in
Figure 4 - 11.

 Rather than hardcoding these values, WordPress
features a function to generate the icon divs
called screen_icon() . This function accepts one parameter, and that is the screen icon
you want to load.

 Now modify your boj_styling_settings() function to display an icon and header.

 < ?php
function boj_styling_settings() {
 ? >
 < div class=”wrap” >
 < ?php screen_icon(‘plugins’); ? >
 < h2 > My Plugin < /h2 >
 < /div >
 < ?php
}
? >

 Now your plugin has a clean header and uses the Plug icon.

 Messages

 When an action occurs in your plugin, such as saving settings, it ’ s important to display a message to
the user verifying whether the update was successful. WordPress features some different styles for
displaying these messages.

 FIGURE 4 - 11

 FIGURE 4 - 10

Keeping It Consistent ❘ 91

92 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 < ?php
function boj_styling_settings() {
 ? >
 < div class=”wrap” >
 < h2 > My Plugin < /h2 >
 < div id=”message” class=”updated” > Settings saved successfully < /div >
 < div id=”message” class=”error” > Error saving settings < /div >
 < /div >
 < ?php
}
? >

 These styles will generate the messages shown in Figure 4 - 12.

 Buttons

 When adding buttons to your form, you can take advantage of multiple classes. The fi rst two you
use are the button - primary and button - secondary classes. These classes style your buttons to
match the WordPress UI.

 < p >
 < input type=”submit” name=”Save” value=”Save Options” / >
 < input type=”submit” name=”Save” value=”Save Options” class=”button-primary” / >
 < /p > < p >
 < input type=”submit” name=”Secondary” value=”Secondary Button” / >
 < input type=”submit” name=”Secondary” value=”Secondary Button”
 class=”button-secondary” / >
 < /p >

 This example demonstrates a standard unstyled button as compared to
the WordPress styled button. As you can tell, the WordPress-styled button
looks familiar and uses the proper styling, as shown in Figure 4 - 13.

 You can also use the button - highlighted class to put an emphasis
on a particular button.

 < input type=”submit” name=”secondary” value=”Secondary Button”
 class=”button-secondary” / >
 < input type=”submit” name=”highlighted” value=”Button Highlighted”
 class=”button-highlighted” / >

 The button is now bold and stands out more than a normal
Secondary button, as shown in Figure 4 - 14. This is useful if you
want to focus the users ’ attention on a button.

 Links can also take the form of a button by using the appropriate
class.

 < a href=”#” > Search < /a >
 < a href=’#’ class=’button-secondary’ > Search < /a >
 < a href=’#’ class=’button-highlighted’ > Search < /a >
 < a href=’#’ class=’button-primary’ > Search < /a >

 FIGURE 4 - 12

 FIGURE 4 - 13

 FIGURE 4 - 14

 This example shows how a standard < a href > link can be styled to
look like a button, as shown in Figure 4 - 15. To normal users they
would never know these are regular text links because they look just
like a button.

 Links

 Links inside the wrap class automatically assume the standard WordPress admin link style.
However, you can modify the default styling in different ways.

 < div class=”wrap” >
 < ?php screen_icon(‘plugins’); ? > < h2 > My Plugin < /h2 >
 < h2 > < a href=”#” > Testing Link < /a > < /h2 >
 < h3 > < a href=”#” > Testing Link < /a > < /h3 >
 < h4 > < a href=”#” > Testing Link < /a > < /h4 >
 < h5 > < a href=”#” > Testing Link < /a > < /h5 >
 < a href=”#” > Testing Link < /a >
 < /div >

 Wrapping any link in a heading tag enables you to adjust the size of the link, as
shown in Figure 4 - 16.

 Form Fields

 WordPress has a special table class just for forms called form - table .
This class is used on all WordPress admin dashboard forms, including every
Settings page. This is a useful class when creating any type of options in your
plugin.

 < div class=”wrap” >
 < ?php screen_icon(‘plugins’); ? >
 < h2 > My Plugin < /h2 >
 < form method=”POST” action=”” >
 < table class=”form-table” >
 < tr valign=”top” >
 < th scope=”row” > < label for=”fname” > First Name < /label > < /th >
 < td > < input maxlength=”45” size=”25” name=”fname” / > < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”lname” > Last Name < /label > < /th >
 < td > < input id=”lname” maxlength=”45” size=”25” name=”lname” / > < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”color” > Favorite Color < /label > < /th >
 < td >
 < select name=”color” >
 < option value=”orange” > Orange < /option >
 < option value=”black” > Black < /option >
 < / select >
 < /td >
 < /tr >

 FIGURE 4 - 16

 FIGURE 4 - 15

Keeping It Consistent ❘ 93

94 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

 < tr valign=”top” >
 < th scope=”row” > < label for=”featured” > Featured? < /label > < /th >
 < td > < input type=”checkbox” name=”favorite” / > < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”gender” > Gender < /label > < /th >
 < td >
 < input type=”radio” name=”gender” value=”male” / > Male
 < input type=”radio” name=”gender” value=”female” / > Female
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”bio” > Bio < /label > < /th >
 < td > < textarea name=”bio” > < /textarea > < /td >
 < /tr >
 < tr valign=”top” >
 < td >
 < input type=”submit” name=”save” value=”Save Options”
 class=”button-primary” / >
 < input type=”submit” name=”reset” value=”Reset”
 class=”button-secondary” / >
 < /td >
 < /tr >
 < /table >
 < /form >
 < /div >

 Using the form - table can give your options a
familiar look to your plugin users. This makes for a
better user experience, as shown in Figure 4 - 17.

 Tables

 HTML tables are a great way to display rows and
columns of data in an easy - to - read layout. Tables
can easily be styled in WordPress using the
 widefat class.

 < table class=”widefat” >
 < thead >
 < tr >
 < th > Name < /th >
 < th > Favorite Holiday < /th >
 < /tr >
 < /thead >
 < tfoot >
 < tr >
 < th > Name < /th >
 < th > Favorite Holiday < /th >
 < /tr >
 < /tfoot >
 < tbody >
 < tr >

 FIGURE 4 - 17

 < td > Brad Williams < /td >
 < td > Halloween < /td >
 < /tr >
 < tr >
 < td > Ozh Richard < /td >
 < td > Talk Like a Pirate < /td >
 < /tr >
 < tr >
 < td > Justin Tadlock < /td >
 < td > Christmas < /td >
 < /tr >
 < /tbody >
 < /table >

 The widefat class has specifi c styles set
for the thead and tfoot HTML tags. This styles
the header and footer of your table to match
all other tables on the admin dashboard. The
class can also style all table data, as shown in
Figure 4 - 18.

 Pagination

 If your plugin contains a list of records, you may have a need for pagination, which is the method to
break lists of data into multiple pages and have links to load each individual page. This helps reduce
the load times and makes it a much cleaner user experience to navigate through the data. Would you
rather view 500 records on a page or 10 pages with 50 records on each page?

 WordPress has a few different classes to style your pagination. Following is an example.

 < div class=”tablenav” >
 < div class=”tablenav-pages” >
 < span class=”displaying-num” > Displaying 1-20 of 69 < /span >
 < span class=”page-numbers current” > 1 < /span >
 < a href=”#” class=”page-numbers” > 2 < /a >
 < a href=”#” class=”page-numbers” > 3 < /a >
 < a href=”#” class=”page-numbers” > 4 < /a >
 < a href=”#” class=”next page-numbers” > & raquo; < /a >
 < /div >
 < /div >

 First, you need to wrap your pagination links in the tablenav and
 tablenav - pages div classes. The displaying - num class styles the
records you view. The page - numbers class styles the page links in the
familiar WordPress format. Adding current or next to the link class
can add some unique styles to those elements, as shown in Figure 4 - 19.

 Keeping your plugin design consistent with the WordPress user interface can reduce your
plugins ’ learning curve because users will feel comfortable with the design and styles used. This

 FIGURE 4 - 18

 FIGURE 4 - 19

Keeping It Consistent ❘ 95

96 ❘ CHAPTER 4 INTEGRATING IN WORDPRESS

can also make your plugins ’ design future-proof. If the WordPress core styles change down the road,
your plugins’ design will also change to match the new user interface, and you won ’ t need to edit a
single line of code!

 SUMMARY

 This chapter covered many different methods for integrating your plugin in WordPress. You
certainly won ’ t use every method discussed in every plugin you develop, but it ’ s essential to
understand what ’ s available for use in your plugin.

Internationalization

 WHAT ’ S IN THIS CHAPTER?

 Understanding the description of internationalization and

localization

 Determining the benefi ts of internationalizing plugins

 Preparing plugins for translation

 Using the WordPress internationalization functions

 Internationalizing JavaScript

 Using translation tools

 Internationalization is the act of preparing your plugin for use in any number of languages.
WordPress uses U.S. English as its default language, but it has a large community of users
who don ’ t read and write in English. This community pulls together to create translations
of WordPress in languages used all around the world.

 One of the goals of WordPress is to make it easy for people across the world to publish
content. As a plugin developer, you can help democratize the publishing process for users
of many different cultures. WordPress makes this easy for developers, so there are no
development hurdles to cross when internationalizing your plugins.

 INTERNATIONALIZATION AND LOCALIZATION

 Using the built - in translation functions in WordPress, you can easily make your plugin
available to a wide variety of people without any knowledge of your users ’ written languages.
The process of translation is handled for you by WordPress if you follow a few simple steps
during the development process.

➤

➤

➤

➤

➤

➤

 5

98 ❘ CHAPTER 5 INTERNATIONALIZATION

 Internationalization deals with making sure strings of text are wrapped in specifi c function calls. It
is the practice of making text ready for localization. The shorthand term for internationalization is
 “ i18n, ” which you may encounter in some situations.

 Localization is the process of translating text for a specifi c locale. WordPress handles
the localization process by checking for specifi c translation fi les and performing the translation.
It ’ s a plugin ’ s job to handle internationalization so that localization can take place. The shorthand
term for localization is “ L10n. ”

 You may notice that we ’ re not taking our own advice throughout this book and
making our code snippets ready for translation. The reason for this is that we
want to provide short and to - the - point code samples that allow for the best
 readability. In real - world practice, you should always internationalize your plugin.

 Why Internationalize?

 Internationalizing your plugin can benefi t both you and your plugin users. Compared to the more
complex functionality you ’ ll likely use when developing a plugin, internationalization will seem
much easier after you follow the guidelines set out in this chapter.

 You benefi t by having a larger audience of people using your plugin.

 Users benefi t by using the plugin in their language.

 Some plugin authors even develop relationships with translators of their plugins after working
closely together to get a translation done. Forming relationships with new people is always a benefi t
of working on open source projects, and by internationalizing your plugin, you open the door for
more possibilities than with plugins that aren ’ t internationalized.

➤

➤

 One fun thing to do is to create your own translation based on your language
and region. For example, if you ’ re from the southern part of the United States,
you could create a translation of your plugin with a bit of southern slang. This
can allow you to get a feel for the process that translators go through when
translating plugins.

 Understanding Internationalization in Professional Work

 Generally, when preparing your plugin for translation, you would do so if it is intended for public
release because many of your users may run sites in languages other than your own.

 Not all plugins are for use by the public. When performing custom client development, it ’ s not
always necessary to follow the steps outlined in this chapter. If your client ’ s site is only in a single
language, there might not be a need for translation. However, some clients run multilingual sites
and may use a multilingual plugin that enables their content to be read in several languages. In this

Internationalization and Localization ❘ 99

case, your plugin should be internationalized. You should always check with your client to see if
internationalization is a requirement.

 Although it ’ s not always necessary to internationalize text for client work, it is considered best
practice to internationalize all text. It saves you from potentially having to recode it for translation
later if the client changes their mind about needing translatable text, and it ’ s always good to stick to
best practices when coding.

 Also, a potential benefi t to learning the tools in this chapter is having an extra bullet point on your
resume for clients in need of this skill.

 Getting Your Plugin Ready for Translation

 The fi rst step to make your plugin translatable is to use the load_plugin_textdomain() function.
This function tells WordPress to load a translation fi le if it exists for the user ’ s language.

 < ?php
load_plugin_textdomain($domain, $abs_rel_path, $plugin_rel_path);
? >

 $domain — A unique string that identifi es text in your plugin that has been prepared for
translation. For organizational purposes, you should give this the same value as the name of
your plugin folder.

 $abs_rel_path — A deprecated parameter that should no longer be used. Setting this to
 false is best.

 $plugin_rel_path — Relative path to the translations of your plugin from the user ’ s plu-
gin directory (WP_PLUGIN_DIR).

 If you were creating a plugin with a folder name of boj - plugin , your code would like this:

 < ?php
load_plugin_textdomain(‘boj-plugin’, false, ‘boj-plugin/languages’);
? >

 Here, the $domain is boj - plugin to match the plugin folder name, the $abs_rel_path has a value
of false because it ’ s unneeded, and the $plugin_rel_path has a value of boj - plugin/languages
because this is where you store translation fi les.

 The last parameter is the directory of the plugin (boj - plugin) and a subdirectory of the plugin
(languages). It ’ s good practice to create an extra folder in your plugin called languages to house
any translations for your plugin. If you ever get more than a handful of translations, you ’ ll want this
folder because placing all those fi les in the top directory of your plugin can get messy.

 Echoing and Returning Strings

 WordPress has many useful functions for making internationalization easy. Every time you
add textual content in your plugin, you should wrap it in one of the WordPress translation
functions.

➤

➤

➤

100 ❘ CHAPTER 5 INTERNATIONALIZATION

 Nearly each of these functions has at least one variable that you ’ ll use: $domain . This is the
unique variable used in the “ Getting Your Plugin Ready for Translation ” section: boj - plugin .
The value of this variable enables WordPress to recognize it as a part of your plugin ’ s translation fi les.

 When viewing the core WordPress fi les, you ’ ll likely notice that $domain is never set. WordPress
uses the default, so your plugin should have a unique string to set it apart from the core.

 The __() Function

 The __() function works by making your text ready for translation and returning it for use in PHP.
In this example, you will assign the return value of __() to a PHP variable. Note that this function
uses a double underscore, not a single underscore.

 < ?php

$text = __(‘WordPress is a wonderful publishing platform.’, ‘boj-plugin’);

? >

 The _e() Function

 _e() makes your text ready for localization. It works similarly to echo in PHP by displaying text
on the screen. The $text variable is the content you want translated. Now add a fun message to the
site ’ s footer using an action hook (see Chapter 3, “ Hooks ”).

 < ?php

/* Hook our message function to the footer. */
add_action(‘wp_footer’, ‘boj_footer_message’);

/* Function that outputs a message in the footer of the site. */
function boj_footer_message() {

 /* Output the translated text. */
 _e(‘This site runs off the coolest platform ever & mdash; WordPress.’,
 ‘boj-plugin’);
}

? >

 The esc_attr__() Function

 esc_attr__() is the internationalization equivalent of the esc_attr() WordPress function (see
Chapter 6, “ Plugin Security ”). It escapes HTML attributes, so anything passed to it won ’ t break
HTML validation standards or open a site up to potential security vulnerabilities.

 esc_attr__() returns the translation for use in PHP. Now create a function that returns a link to a
terms of service page on an example site and display it.

Internationalization and Localization ❘ 101

 < ?php

/* A function that returns a link to the site’s terms of service page. */
function boj_terms_of_service_link() {
 return ‘ < a href=”http://example.com/tos” title=”’ .
 esc_attr__(‘Visit the Terms of Service page’, ‘boj-plugin’) . ‘” > ’ .
 __(‘Terms of Service’, ‘boj-plugin’) . ‘ < /a > ’;
}

/* Display the output of the boj_terms_of_service_link() function. */
echo boj_terms_of_service_link();

? >

 The esc_attr_e() Function

 esc_attr_e() works the same as the esc_attr__() function except that displays the translation
on the screen. For example, you might display a link to the dashboard page in the WordPress admin,
so you want to make sure the title attribute of the link works correctly. You can also use the _e()
function from earlier.

 < a href=” < ?php echo admin_url(‘dashboard.php’); ? > ”
title=” < ?php esc_attr_e(‘Visit the WordPress dashboard’, ‘boj-plugin’); ? > ” >
 < ?php _e(‘Dashboard’, ‘boj-plugin’); ? > < /a >

 The esc_html__() Function

 esc_html__() is the equivalent of the WordPress function esc_html() (see Chapter 6) for
translations. You need to use this function in situations in which HTML would be inappropriate for
use. This function returns its output for use in PHP.

 Suppose a form was submitted with the content of a < textarea > in which a default text message
is provided. You ’ d escape the input the user submitted or escape the default message that the
translator provides.

 < ?php

function boj_get_text_message() {

 /* If the user input any text, escape it. */
 if (!empty($_POST[‘boj-text’]))
 $message = esc_html($_POST[‘boj-text’]);

 /* If no text was input, use a default, translated message. */
 else
 $message = esc_html__(‘No message input by the user.’, ‘boj-plugin’);

 return $message;
}

? >

102 ❘ CHAPTER 5 INTERNATIONALIZATION

 The esc_html_e() Function

 esc_html_e() behaves the same as the esc_html__() function except that it displays the translated
text on the screen instead of returning it. For example, you may be adding a form with some
default text in a < textarea > but want to make sure no HTML is shown.

 < textarea name=”boj-text” id=”boj-text” >
 < ?php esc_html_e(‘Please input a description.’, ‘boj-plugin’); ? >
 < /textarea >

 The _x() Function

 Sometimes, you need to provide context for translations. The _x() function enables plugin
developers to use the same text string multiple times within a plugin. This function ’ s purpose is to
provide a context in which a specifi c text string is used.

 Suppose you ’ re creating an SEO plugin in which you use the text “ SEO ” in several places. In this
example, you add a meta box (see Chapter 4, “ Integrate in WordPress ”) for SEO settings on the post
editor screen in the admin. You can provide a context for this particular instance of “ SEO. ”

 < ?php

add_action(‘admin_menu’, ‘boj_add_seo_meta_box’);

function boj_add_seo_meta_box() {
 add_meta_box(
 ‘boj_seo_meta_box’,
 _x(‘SEO’, ‘meta box, ‘boj-plugin’),
 ‘boj_seo_meta_box_callback’,
 ‘post’,
 ‘advanced’
);
}

function boj_seo_meta_box_callback() {
 _e(‘An example meta box.’, ‘boj-plugin’);
}

? >

 The _ex() Function

 _ex() is a function to use when you need to note a specifi c context for a string of text. It works the
same as the _x() function except that it echoes its output instead of returning it.

 You may use the same text in several places throughout your plugin, but each instance means
something different. The term Post is often used in blogging systems as both a noun and a verb.
When internationalizing, you need to mark the difference between the two by using a context.

 Use the second parameter, $context , to provide a context to translators on how the term is used in
this instance.

Internationalization and Localization ❘ 103

 The following example shows two uses of the term Post and how it can be used as both a noun
and a verb.

 < ?php

/* Displaying “Post” as a noun. */
_ex(‘Post’, ‘noun’, ‘boj-plugin’);

/* Displaying “Post” as a verb. */
_ex(‘Post’, ‘verb’, ‘boj-plugin’);

? >

 Well - written text is important. Before using a contextual translation function, ask yourself if the
text itself can be written in a more intuitive manner. Instead of using a generic term such as Post,
you can make this easier to understand for plugin users and translators.

 Post as a noun can be better written as Select a post, and Post as a verb could be better written as
Submit post. Therefore, you wouldn ’ t need to use the _ex() function in either case. You could use
 _e() instead.

 < ?php

_e(‘Select a post’, ‘boj-plugin’);

_e(‘Submit post’, ‘boj-plugin’);

? >

 The esc_attr_x() Function

 esc_attr_x() is a marriage between two of the earlier translation functions: esc_attr__()
and _x() . It enables you to translate text, provide a context for translation, and escape it for use
in HTML attributes. This function returns translated text for use in PHP, but it does not have a
similar function for printing text to the screen.

 In the following example, the function displays a link to the WordPress admin. Use the esc_attr_
x() function in the title attribute of the link so that any unwanted characters are properly escaped
and to provide a context for the text string “ Admin. ”

 < ?php

function boj_plugin_display_post_link($post_id) {

 /* The text for the link. */
 $boj_link_text = _x(
 ‘Admin’,
 ‘admin link’,
 ‘boj-plugin’
);

104 ❘ CHAPTER 5 INTERNATIONALIZATION

 /* The text for the “title” attribute of the link. */
 $boj_link_title = esc_attr_x(
 ‘Admin’,
 ‘admin link’,
 ‘boj-plugin’
);

 /* Display the link on the screen. */
 echo ‘ < a href=”’ . admin_url(‘dashboard.php’) . ‘”
 title=”’ . $boj_link_title . ‘” > ’ . $boj_link_text . ‘ < /a > ’;
}

? >

 The esc_html_x() Function

 esc_html_x() merges the esc_html__() and _x() functions into a single function that allows for
text translation, escapes unwanted HTML, and provides a context to translators.

 Suppose you created a plugin that allows users to fi ll in a form about their favorite things and
submit it to the site owner for review. Further suppose you have an optional input fi eld called boj -
 favorite - food that needs a default value translated in the case of the users not disclosing their
favorite food. In this example, you use the term “ None, ” which is a common word and may be used
in various circumstances. You should provide a context such as “ favorite food ” or “ favorite item ” to
differentiate this instance of “ None ” from others.

 < ?php

function boj_get_favorite_food() {

 /* If the user input a favorite food. */
 if (!empty($_POST[‘favorite-food’]))
 $boj_favorite_food = esc_html($_POST[‘favorite-food’]);

 /* If no favorite food was chosen, set a default. */
 else {
 $boj_favorite_food = esc_html_x(
 ‘None’,
 ‘favorite item’,
 ‘boj-plugin’
);
 }

 return $boj_favorite_food;
}

? >

 The _n() Function

 As a developer, you may not always know how many items will be returned for use in your PHP
code. You can use the _n() function to differentiate between the singular and plural forms of text.

Internationalization and Localization ❘ 105

Not only will this function fi gure out which form should be used, it also will enable you to make
each form translatable. Both the singular and plural forms need to be internationalized because the
order that words appear for plural and singular forms is different in various languages.

 This function ’ s parameters are different from some of the other translation functions. $single
represents the singular version of the text, and $plural represents the plural version of the text.
 $number is a parameter that you cannot know at the moment of writing your code. It ’ s an unknown
integer that can have various values.

 Not all languages use only two forms (singular and plural). However, you only need to take care
of these two forms. If a language requires more than two forms, translators will provide this in the
translation fi les and WordPress ’ s localization process will use the correct form.

 Now create a function that counts the number of posts published on the site and prints the value in
a sentence using the printf() function (see the “ Using Placeholders ” section).

 < ?php

function boj_count_published_posts() {

 /* Count the number of posts. */
 $boj_count_posts = wp_count_posts();

 /* Get the count for the number of posts with a post_status of ‘publish’. */
 $count = $boj_count_posts- > publish;

 /* Display a sentence, letting the user know how many posts are published. */
 printf(_n(
 ‘You have published %s post.’, ‘You have published %s posts.’,
 $count,
 ‘boj-plugin’),
 $count);
}

? >

 The two sentences used look similar in English, and many developers may think it ’ s easier to get
away with “ You have published %s post(s). ” Although this works in some languages, it likely won ’ t
work in most.

 For an example of why this method wouldn ’ t work, look at the word journal in French. Using
 “ journal(s) ” in this case wouldn ’ t apply because the plural form of journal is journaux .

 The _nx() Function

 The _nx() function is a combination of the _n() and _x() translation functions. It allows for the
differentiation of singular and plural forms of text and a context for the text.

 In this example, you create a function that grabs all of a site ’ s post tags and lists the number of posts
that have been given each particular tag. The _nx() function provides a way for you to display the
text based on the post count of each tag and provide a context for translation of the text.

106 ❘ CHAPTER 5 INTERNATIONALIZATION

 < ?php

function boj_list_post_tag_counts() {

 /* Get all post tags in an alphabetical list. */
 $tags = get_terms(‘post_tag’, array(‘orderby’ = > ‘name’, ‘order’ = > ‘ASC’));

 /* Open unordered list. */
 echo ‘ < ul > ’;

 /* Loop through each post tag and display its post count and name. */
 foreach ($tags as $tag) {
 echo ‘ < li > ’;
 printf(
 _nx(
 ‘%s post’,
 ‘%s posts’,
 $tag- > count,
 ‘post count’,
 ‘boj-plugin’
),
 $tag- > count
);
 echo ‘ < /li > ’;
 }

 /* Close unordered list. */
 echo ‘ < /ul > ’;
}

? >

 The _n_noop() Function

 There are some cases in which you might have singular and plural forms of text that you don ’ t want
translated on the spot but need translated later. This is useful when you have large lists of messages
but don ’ t know which to display until a variable has been set.

 The _n_noop() function adds these values to the translation fi les. Rather than returning translated
string like most other translation functions, it returns an array with both values.

 Suppose you created two custom post types (see Chapter 11, “ Extending Posts ”) called video and
 music to give your plugin users some nifty features for their site. You have some messages you ’ d
like translated, but you want to keep the code easy to reuse and short. In the following example,
you create a function that takes a parameter of $post_type . This displays the appropriate message
depending on the value of this parameter.

 < ?php

function boj_count_posts_of_cusboj_types($post_type = ‘video’) {

 /* Get a count of all posts of the given post type. */
 $all_posts = wp_count_posts($post_type);

Internationalization and Localization ❘ 107

 /* Get the count of the published posts. */
 $count = $all_posts- > publish;

 /* Prepare an array of messages. */
 $boj_messages = array(
 ‘video’ = > _n_noop(‘You have %s video.’, ‘You have %s videos.’),
 ‘music’ = > _n_noop(‘You have %s music file.’, ‘You have %s music files.’)
);

 /* Get the message for the custom post type given. */
 $boj_message = $boj_messages[$post_type];

 /* Print the message for the custom post type given and its count. */

 printf(_n(
 $boj_message[‘singular’],
 $boj_message[‘plural’],
 $count
), $count);
}

? >

 The function used the _n_noop() function to build the array of messages, but it used the _n()
function to display the translated message. This enabled you to translate only the message needed at
the moment instead of each message.

 The _nx_noop() Function

 _nx_noop() combines the _n_noop() function and the _x() function to enable setting up text
for later translation and providing a context for translators on how the text is used in the plugin.
It works the same as _n_noop() by adding the text to translation fi les but not translating it when
used in PHP.

 Building off the previous example of showing the number of posts published by type, you can use
the _nx_noop() function to add a context.

 < ?php

function boj_count_posts_of_custom_types($post_type = ‘video’) {

 /* Get a count of all posts of the given post type. */
 $all_posts = wp_count_posts($post_type);

 /* Get the count of the published posts. */
 $count = $all_posts- > publish;

 /* Prepare an array of messages. */
 $boj_messages = array(
 ‘video’ = > _n_noop(
 ‘%s video’,
 ‘%s videos’,
 ‘post count’
),

108 ❘ CHAPTER 5 INTERNATIONALIZATION

 ‘music’ = > _n_noop(
 ‘%s music file’,
 ‘%s music files’,
 ‘post count’
)
);

 /* Get the message for the custom post type given. */
 $boj_message = $boj_messages[$post_type];

 /* Print the message for the custom post type given and its count. */
 printf(_n(
 $boj_message[‘singular’],
 $boj_message[‘plural’],
 $count
), $count);
}

? >

 Using Placeholders

 You may have noticed the use of symbols such as %s and %1$s in previous examples. These are
placeholders for variables. Placeholders are useful because they enable you to translate strings
without breaking them apart.

 The translation functions in WordPress cannot output placeholders on their own. The placeholders
are merely there for translators to properly set within the text of their translation fi les.
Placeholders must be converted to a given variable in PHP.

 The printf() and sprintf() PHP functions are useful when using placeholders. Both functions
can replace the placeholder with a given variable. Use printf() to print text to the screen and
 sprintf() to return text. Each function takes in a fi rst parameter of $text , which is the text you ’ re
translating. Both can then receive any number of extra parameters that represent the placeholders in
the $text variable.

 Now take a look at an example of a translated sentence that works in English but breaks in many
other languages.

 < ?php
function boj_display_blog_name() {
 _e(‘The name of your blog is ‘, ‘boj-plugin’);
 echo get_bloginfo(‘name’);
 _e(‘.’, ‘boj-plugin’);
}
? >

 Although the text in that function is internationalized, it ’ s not done in a way that ’ s easily
translatable. This is where placeholders come in. They enable you to set a variable in the text and
keep it as one sentence.

 Now rewrite that function in a way that makes it easier for translators to translate. Use printf() to
print the sentence to the screen and convert the placeholders.

Internationalization and Localization ❘ 109

 < ?php
function boj_display_blog_name() {
 printf(
 __(‘The name of your blog is %s.’, ‘boj-plugin’),
 get_bloginfo(‘name’)
);
}? >

 Now create a function that returns the tagline of the site in a sentence using the sprintf()
function.

 < ?php
function boj_get_blog_tagline() {
 return sprint(
 __(‘The tagline of your site is %s.’, ‘boj-plugin’),
 get_bloginfo(‘description’)
);
}
? >

 Sometimes you need multiple placeholders in one text string. Luckily, both printf() and sprintf()
handle this wonderfully. The big difference here is that you shouldn ’ t use %s . It ’ s best to use numbered
placeholders instead because the order of words in other languages may be different than your own.

 In the following example, you use multiple placeholders to display a sentence depending on the
number of posts published on the blog, along with the blog title.

 < ?php

function boj_display_blog_name_and_post_count() {

 /* Get the number of posts. */
 $count_posts = wp_count_posts();

 /* Get the number of published posts. */
 $count = $count_posts- > publish;

 /* Get the site name. */
 $site_name = get_bloginfo(‘name’);

 /* Display a sentence based on the number of posts published. */
 printf(
 _n(
 ‘There is %1$s post published on %2$s.’,
 ‘There are %1$s posts published on %2$s.’,
 $count,
 ‘boj-plugin’
),
 $count, $site_name
);
}

? >

110 ❘ CHAPTER 5 INTERNATIONALIZATION

 In the example function, the %1$s placeholder represents the $count variable, which returns the
number of published posts. The %2$s placeholder represents the value of $site_name , which was set
to the name of the site.

 Internationalizing JavaScript

 Some plugins require JavaScript to function properly (see Chapter 12, “ JavaScript and AJAX ”).
Because the internationalization functions in WordPress are written in PHP, you can ’ t use them
inside of JavaScript fi les. This makes it a little tougher to translate but not impossible.

 WordPress provides a function called wp_localize_script() that enables you to pass translated
text to an external fi le. You can then use the translated strings within your JavaScript. Take a look
at what this function looks like.

 < ?php
wp_localize_script($handle, $object_name, $l10n);
? >

 $handle must match the $handle parameter of a script that ’ s already registered with
WordPress (see Chapter 12).

 $object_name is a unique identifi er that represents this set of translations.

 $l10n is an array of translations with named keys that each has a value of a single
 translated string.

 To understand how all this comes together, you need to create a plugin that uses JavaScript. You
use a simple script here. To delve more into the process of using JavaScript, read the thorough
explanation in Chapter 12. Your plugin will add two input buttons to the site ’ s footer. When either
of the buttons is clicked, a translated message appears.

 The fi rst step is to create a new plugin folder called boj - alert - box and place a new PHP fi le
called boj - alert - box.php in this folder. In the boj - alert - box.php fi le, add your plugin
information (Chapter 2, “ Plugin Foundation ”).

 < ?php
/**
 * Plugin Name: BOJ Alert Box
 * Plugin URI: http://example.com
 * Description: A plugin example that places two input buttons in the blog footer
 that when clicked display an alert box.
 * Version: 0.1
 * Author: WROX
 * Author URI: http://wrox.com
 */

 Code snippet boj - alert - box.php

 Next, you need to load your translation as described in the “ Getting Your Plugin Ready for
Translation ” section.

➤

➤

➤

Internationalization and Localization ❘ 111

/* Add the translation function after the plugins loaded hook. */
add_action(‘plugins_loaded’, ‘boj_alert_box_load_translation’);

/**
 * Loads a translation file if the paged being viewed isn’t in the admin.
 *
 * @since 0.1
 */
function boj_alert_box_load_translation() {

 /* If we’re not in the admin, load any translation of our plugin. */
 if (!is_admin())
 load_plugin_textdomain(‘boj-alert-box’, false, ‘boj-alert-box/languages’);
}

 Code snippet boj - alert - box.php

 At this point, you need to load your script using the wp_enqueue_script() function. After
calling that function, you can localize your script using the wp_localize_script() function. It is
important that this function is called after the script has been registered because the $handle variable
has to be set.

/* Add our script function to the print scripts action. */
add_action(‘wp_print_scripts’, ‘boj_alert_box_load_script’);

/**
 * Loads the alert box script and localizes text strings that need translation.
 *
 * @since 0.1
 */
function boj_alert_box_load_script() {

 /* If we’re in the WordPress admin, don’t go any farther. */
 if (is_admin())
 return;

 /* Get script path and file name. */
 $script = trailingslashit(plugins_url(‘boj-alert-box’)) .
 ‘boj-alert-box-script.js’;

 /* Enqueue our script for use. */
 wp_enqueue_script(‘boj-alert-box’, $script, false, 0.1);

 /* Localize text strings used in the JavaScript file. */
 wp_localize_script(‘boj-alert-box’, ‘boj_alert_box_L10n’, array(
 ‘boj_box_1’ = > __(‘Alert boxes are annoying!’, ‘boj-alert-box’),
 ‘boj_box_2’ = > __(‘They are really annoying!’, ‘boj-alert-box’),
));
}

 Code snippet boj - alert - box.php

112 ❘ CHAPTER 5 INTERNATIONALIZATION

 Now you add a couple of fun input buttons to the footer of the site. Notice the use of the
 esc_attr__() function from earlier in the chapter to translate and escape the value attributes of
the buttons.

/* Add our alert box buttons to the site footer. */
add_action(‘wp_footer’, ‘boj_alert_box_display_buttons’);

/**
 * Displays two input buttons with a paragraph. Each button has an onClick()
 * event that loads a JavaScript alert box.
 *
 * @since 0.1
 */
function boj_alert_box_display_buttons() {

 /* Get the HTML for the first input button. */
 $boj_alert_box_buttons = ‘ < input type=”button” onclick=”boj_show_alert_box_1()”
 value=”’ . esc_attr__(‘Press me!’, ‘boj-alert-box’) . ‘” / > ’;

 /* Get the HTML for the second input button. */
 $boj_alert_box_buttons .= ‘ < input type=”button” onclick=”boj_show_alert_box_2()”
 value=”’ . esc_attr__(‘Now press me!’, ‘boj-alert-box’) . ‘” / > ’;

 /* Wrap the buttons in a paragraph tag. */
 echo ‘ < p > ’ . $boj_alert_box_buttons . ‘ < /p > ’;
}

? >

 Code snippet boj - alert - box.php

 Your plugin ’ s PHP fi le is complete. You now need to add a JavaScript fi le called boj - alert - box -
 script.js to your plugin folder. After it ’ s created, you can add two functions for displaying the
alert boxes on screen. Within the boj - alert - box - script.js file , add the JavaScript.

/**
 * Displays an alert box with our first translated message when called.
 */
function boj_show_alert_box_1() {
 alert(boj_alert_box_L10n.boj_box_1);
}

/**
 * Displays an alert box with our second translated message when called.
 */
function boj_show_alert_box_2() {
 alert(boj_alert_box_L10n.boj_box_2);
}

 Code snippet boj - alert - box - script.js

 Because you ’ re working across multiple fi les, it may be hard to see how the fi les interact with one
another.

 The two most important parameters from the call to wp_localize_script() are the $object_name
and $l10n parameters. In the example plugin, you specifi cally set $object_name to boj_alert_
box_L10n and $l10n to an array of key/value pairs.

 When needing a translation in the JavaScript fi le, you used $object_name.$l10n[$key] . In the
JavaScript function for the fi rst alert box, this looks like this:

alert(boj_alert_box_L10n.boj_box_2);

 CREATING TRANSLATION FILES

 Now that you ’ ve done all the hard work of internationalizing the text strings in your plugin,
you have one more step to complete. This step requires much less work than the previous steps. You
need to create a default translation fi le to kick start the translation process for potential translators.

 To provide a consistent look at how this process works, you can work with the BOJ Alert Box
plugin from the “ Internationalizing JavaScript ” section.

 The MO and PO Files

 When translators create translations of your plugin, they use your plugin ’ s POT fi le to create two
fi les: boj - alert - box - $locale.mo and boj - alert - box - $locale.po .

 boj - alert - box is the $domain parameter used in the translation functions throughout the plugin.
 $locale is a variable that represents the language and regional dialect. For example, WordPress
uses en_US as its default language. en represents English, and US represents the region.

 The PO fi le is the fi le used by translation tools to allow for human - readable text. Translators work
with this fi le to provide a translation. The PO fi le isn ’ t necessary to run a translation of your plugin,
but it ’ s always nice to package it with your plugin download for use by other users that may want to
update any text to suit their needs.

 The MO fi le is created from the fi nished translation. WordPress uses it to translate internationalized
text strings from your plugin.

 WordPress users set their locale in their wp - config.php fi le. This tells WordPress to look for any
translations with that locale and load them. If users set their locale to fr_FR (French), WordPress
would load a fi le called boj - alert - box - fr_FR.mo if it existed in your plugin.

 Translation Tools

 Many translation tools around the Web are open source and free to download. Each tool isn ’ t
covered in detail here because they all have different ways to create translations. However, there is a
list of supported translation tools for WordPress.

Creating Translation Files ❘ 113

114 ❘ CHAPTER 5 INTERNATIONALIZATION

 Following are available tools for translation:

 Poedit: http://poedit.net

 GlotPress: http://glotpress.org

 Launchpad: https://translations.launchpad.net

 Pootle: http://pootle.locamotion.org

 KBabel: http://i18n.kde.org

 GNU Gettext: http://gnu.org/software/gettext

 One of the most common tools for plugin developers is Poedit. It has a simple, point - and - click
interface that enables developers to create a POT fi le from their plugin.

 GlotPress is a new Web - based tool from the people behind the WordPress project that promises to
enable a single person or a team to work on translating software. It is now being used to facilitate
the translation process for the WordPress software at http://translate.wordpress.org .

 How to Create a POT File

 Using Poedit from the “ Translating Tools ” section, you can create a POT fi le. You need to input
only a few pieces of information, and Poedit does the rest for you.

 1. Click File under the main menu.

 2. Click New Catalog. A Settings box appears with three tabs, as shown in Figure 5 - 1.

 3. In the Project info tab, fi ll in the input boxes that are relevant to your plugin, leaving the
Charset box as UTF - 8 .

 4. In the Paths tab, change the Base Path to ../ and add an extra path of . if you ’ re placing
your translations in the languages folder of your plugin. If not, leave this at the default.

 5. In the Keywords tab, enter each function name from the “ Echoing and Returning Strings ”
section of this chapter as a new keyword. For example, enter esc_attr_e() as esc_attr_e .

 6. Click OK to save your POT fi le settings.

 7. Save your fi le as plugin - name.pot in your plugin ’ s languages folder. For example, the
BOJ Alert Box plugin would be boj - alert - box.pot .

➤

➤

➤

➤

➤

➤

 FIGURE 5 - 1

 After you complete this process, Poedit synchronizes your POT fi le with your plugin, and you will
have completed the process of preparing your plugin for translation.

 Where to Store Translation Files

 Many plugins add translation fi les in the top level of their plugin folder. Although translations will
work when using this method, it can get a bit messy and is discouraged. If you have a plugin with
many other fi les, it may become much too unorganized if you take this route.

 For the cleanest, most organized system, create an extra directory in your plugin folder called
 languages . When you release your plugin, you can store your default translation fi les in this folder.
When translators send you translation fi les for your plugin, you simply drop those fi les in the
 languages folder. Be sure to add both the PO fi le (for translators) and MO fi le (for WordPress) of
the translation you ’ re given.

 SUMMARY

 The biggest lesson to take away from this chapter is that people use WordPress in all corners of the
world. To have a good plugin for public download, it is essential that you prepare it for translation.
This can set your plugin apart from the many thousands of plugins that aren ’ t internationalized.
After you start putting the tools of this chapter into practice, you can see how easy it is to make
your plugin more powerful and build a larger community around your work.

Summary ❘ 115

Plugin Security

 WHAT ’ S IN THIS CHAPTER?

 Understanding what security is

 Learning to identify weak spots in code

 Preventing malicious attacks such as XSS or CSRF

 Checking user permissions

 Validating and sanitizing data

 Formatting robust and secure SQL queries

 Keeping good practices in mind

 In computer language, “ security ” often refers to scary buzzwords such as Cross Site
Scripting (XSS), Cross Site Request Forgery (CSRF), SQL Injection, Privilege Escalation,
Vulnerabilities, and Holes.

 Are you frightened yet?

 You should be scared because these are real threats and, as you will read, trivial to execute
against shabby code. But then, you should not be scared because, fortunately, WordPress
comes with all the tools you need to make your code safe and secure.

 SECURING YOUR PLUGIN

 Weak code may be subject to abuse and eventually compromise your server security, or
retrieve otherwise hidden data about you or your users. This is the worst - case scenario.

 But before letting Internet pirates wander in your fi les and directories, feeble code will simply
fail at making sure that data entered by an honest user is valid and sanitary. As you can see

➤

➤

➤

➤

➤

➤

➤

 6

118 ❘ CHAPTER 6 PLUGIN SECURITY

in this chapter, a poorly coded form can, for instance, truncate user input and as a result process
partial content.

 What Securing Your Plugin Is

 Making your plugin secure is dealing with vulnerabilities and data integrity and reliability. It ’ s both
preventing malicious attacks and making sure legitimate use cannot produce unexpected behavior.

 What Securing Your Plugin Is Not

 In WordPress ’ environment, securing your plugin is not a diffi cult task, nor is it cumbersome or
time consuming: WordPress implements several functions to address the various potential issues.

 USER PERMISSIONS

 You probably have already noticed it:
When you try to access an admin page of a
WordPress blog while being logged in as a
user that is not an administrator, you may be
shown a message stating that you don ’ t have
suffi cient privileges, as shown in Figure 6 - 1.

 To guarantee that specifi c actions (such as
managing plugins or changing the site options) are restricted to a population with specifi c rights,
in other words to block privilege escalation attacks, WordPress makes extensive use of a function
named current_user_can() . You too, of course, can and should use this function in your plugins.

 How to Check current_user_can()

 The usage of current_user_can() is straightforward: You either check if a user has a capability or
a role before proceeding to a sensitive action, or die with a meaningful message. For example:

 < ?php

// Capability:
if (!current_user_can(‘install_plugins’))
 wp_die(‘Insufficient permissions’);

// Role:
if(!current_user_can(‘editor’))
 wp_die(‘You cannot edit this setting’);
? >

 You can either use default roles and capabilities or create custom ones. You learn how to do this in
Chapter 8, which is devoted to user management.

 FIGURE 6 - 1

 Do Not Check Too Early

 The function current_user_can() depends on get_currentuserinfo() , which has a particularity:
It is a pluggable function. Pluggable functions can be replaced by plugins: They can be found in fi le
 wp - includes/pluggable.php , which is loaded after active plugins.

 Because of this particularity you cannot check user permissions at plugin loading and instead will
need to wait until WordPress has fully started and instantiated (for instance, after the action ‘ init ’).

 For example, picture a plugin that outputs debug information when you append ?debug=1 to any
URL of the blog, but only if the user is an administrator.

 The debug output function here prints out all SQL queries that WordPress ran, provided that the
constant SAVEQUERIES is set to true:

 < ?php
// Print debug information
function boj_debug_output() {
 global $wpdb;
 echo “ < pre > ”;
 print_r($wpdb- > queries);
 echo “ < /pre > ”;
}
? >

 Now how can you make this function dependant on the query parameter debug=1 ?

 The worst way to do so would be the following:

 < ?php
if(isset($_GET[‘debug’]))
 boj_debug_output();
? >

 This is bad practice because debug information can potentially reveal sensitive information such as
physical paths or table names, and with such a conditional test, anyone would see them by simply
adding ?debug=1 to any URL of the site.

 Because you want to restrict the debug data to the administrator of the blog, you need to code a
more evolved condition:

 < ?php
if(isset($_GET[‘debug’]) & & current_user_can(‘manage_options’))
 boj_debug_output();
? >

 But this won ’ t work: Remember, when the plugin is loaded and the server parses and compiles its
code, pluggable functions are not in memory yet. What you need to do is to hook this check to an
action that occurs only when everything is loaded.

User Permissions ❘ 119

120 ❘ CHAPTER 6 PLUGIN SECURITY

 Following is the complete plugin:

 < ?php
/*
Plugin Name: Simple Debug
Plugin URI: http://example.com/
Description: Append ?debug=1 to display debug info if you are an admin
Author: WROX
Author URI: http://wrox.com
*/

add_action(‘init’, ‘boj_debug_check’);

function boj_debug_check() {
 if(isset($_GET[‘debug’]) & & current_user_can(‘manage_options’)) {
 if(!defined(‘SAVEQUERIES’))
 define(‘SAVEQUERIES’, true);
 add_action(‘wp_footer’, ‘boj_debug_output’);
 }
}

// Print debug information
function boj_debug_output() {
 global $wpdb;
 echo “ < pre > ”;
 print_r($wpdb- > queries);
 echo “ < /pre > ”;
}
? >

 Code snippet plugin - simple - debug.php

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 In your plugins, always hook function calls to an appropriate action, such as
 ‘ init ’ or ‘ plugins_loaded ’ . This way you can ensure that all WordPress
functions have been declared and your function won ’ t be triggered too soon.

 NONCES

 In the previous section about user permissions, you learned how to check that people have authority
before they can perform an operation, and doing so, you protect their blog against nonprivileged
users. But you also need to protect users from . . . themselves.

 Authority Versus Intention

 When you are logged into your WordPress install, you can click links that perform various actions,
such as delete a post, update plugin settings, or create a category. Before proceeding, all these

operations should verify that you are actually logged in and have suffi cient permission, using the
function current_user_can() . They verify that you have authority.

 Now imagine people maliciously crafting a link that would delete a post on your blog. They could
not use it themselves, of course, because they have no admin account on your blog and thus, no
authority. But what if they trick you into clicking on this link? Because you are logged in, the action
would occur, and the post would be deleted. You had authority but no intention. The malicious
users just completed a Cross Site Request Forgery, or CSRF.

 To trick people into clicking a link on their own site is trivial. For instance, hide
the link with a URL shortener such as bit.ly and share it via instant messaging
with a compelling message such as “ Look at this pic, very funny! ” In the age of
Twitter and Facebook, CSRF attacks are fl ourishing.

 Of course, WordPress has a built - in solution to prevent these attacks.

 What Is a Nonce?

 In computer language, a nonce, or cryptographic nonce, is the abbreviation of “ number used
once. ” In WordPress, it is a short and apparently random string such as a password, which is
specifi c to the following:

 One WordPress user

 One action (delete, update, save, and such)

 One object (a post, a link, a plugin setting, and such)

 One time frame of 24 hours

 For example, the link to delete the post #43 in your WordPress blog could be something such as
 http://example.com/wp - admin/post.php?post=43 & action=trash & _wpnonce=83a08fcbc2 . The
nonce, here 83a08fcbc2 , is valid for only 24 hours, only if used by you and only to delete post #43.
When you click that link, WordPress verifi es
that this nonce meets all these specifi cations
before actually deleting the link.

 More important, a nonce cannot be guessed
by a malicious user, and loading a link
without the correct nonce goes nowhere,
as shown in Figure 6 - 2, which shows the
result of trying to activate a plugin without
knowing the valid nonce.

➤

➤

➤

➤

 FIGURE 6 - 2

Nonces ❘ 121

122 ❘ CHAPTER 6 PLUGIN SECURITY

 How to Create and Verify Nonces

 WordPress employs two different functions to create nonces in forms, as hidden fi elds, or in URLs,
as a GET parameter.

 To become acquainted with nonces, you can code a useful plugin to enhance WordPress native tag
management features. This plugin identifi es post tags not used in any post and enables you to either
rename or delete them. Call this plugin Unused Tags and use the prefi x boj_utags .

 Creating a URL Nonce

 To create and add a nonce to a URL, just like in the previous example with links deleting a post,
use function wp_nonce_url() as follows:

 < ?php
$url = wp_nonce_url($url, $action);
? >

 The fi rst parameter $url is a string of the URL address to which you want to append a nonce
in the query string. The links in the Unused Tags plugin to delete a link will be of the form
 http://example.com/wp - admin/edit.php?page=boj_utags & boj_action=delete & id=6 ; in
this URL notice the parameter boj_action and the tag ID.

 The second parameter $action is the string with which you make the nonce specifi c to one action
and one object. The link you want to protect with a nonce here is tied to the action “ delete ” and the
tag id 6, so the $action parameter could be ‘ boj_utags - delete_tag6 ’ .

 The nonce action can be any string, but to make it unique to your plugin and
one action over one object (besides the current user and the 24 - hour window),
it is good practice to adhere to the plugin - action_object model.

 To sum it up, in your plugin, given a tag ID $id , the code to generate a nonce protected URL to
delete this tag will be the following:

 < ?php

$delete_url = add_query_arg(array(‘boj_action’= > ’delete’,’id’= > $id));
$nonced_url = wp_nonce_url($delete_url, ‘boj_utags-delete_tag’.$id);
? >
 < a href=” < ?php echo $nonced_url; ? > ” > delete < /a > this tag

 To craft the delete link, you have used the handy function add_query_arg() , which adds to
the current URL the query parameters defi ned in its array parameter. In other words, it adds
 ?boj_action=delete & id=6 , or & boj_action=delete & id=6 if the current URL already has a
query string.

 Creating a Form Nonce

 Nonces also protect forms, with function wp_nonce_field() . This function needs a single string
parameter, the nonce action plugin - action_object .

 Given the $name and $id of a post tag, the proper form to allow renaming it follows:

 < form action=”” method=”post” >
 < ?php wp_nonce_field(‘boj_utags-rename_tag’.$id); ? >
 < input type=”hidden” name=”boj_action” value=”rename” / >
 < input type=”hidden” name=”id” value=” < ?php echo $id; ? > ” / >
 < input type=”text” name=”name” value=” < ?php echo esc_attr($name); ? > ” / >
 < input type=”submit” value=”Rename” / >
 < /form >

 Notice how you used a new function named esc_attr() here: It is to ensure that, should $name
contain quotes, it will not break the display and the form. You learn all about this in the next
section about data sanitization.

 Verifying a Nonce

 Adding nonces to URLs or forms is only the fi rst part of the job: On the other end, the function that
executes the expected operation needs to verify before that the nonce is valid and tied to that operation.

 The function you use is named check_admin_referer() : It authenticates the nonce, silently does
nothing if valid, or dies with an “ Are you sure ” error screen, as shown in Figure 6 - 2. This function
must be called before any output is sent to the screen.

 In your plugin, parameters such as the action or the tag ID are either passed via GET (the URL
query string) or POST (the submitted form): Instead of checking both arrays $_GET and $_POST ,
you simply examine $_REQUEST to get the parameter values.

 The complete code block to check nonces and then rename or delete a post tag follows:

 < ?php

if(!current_user_can(‘manage_options’))
 wp_die(‘Insufficient privileges!’);

$id = $_REQUEST[‘id’];
$action = $_REQUEST[‘boj_action’];

check_admin_referer(‘boj_utags-’.$action.’_tag’.$id);

switch($action) {
 case ‘rename’:
 $newtag = array(‘name’ = > $_POST[‘name’], ‘slug’ = > $_POST[‘name’]);
 wp_update_term($id, ‘post_tag’, $newtag);
 break;
 case ‘delete’:
 wp_delete_term($id, ‘post_tag’);
 break;
}
? >

Nonces ❘ 123

124 ❘ CHAPTER 6 PLUGIN SECURITY

 Notice how you fi rst check user permissions: Nonces check a user ’ s intention, but you still need to
validate their authority.

 Wrapping It Up: The Entire “ Unused Tags ” Plugin

 To be fully operational, your plugin now needs a proper plugin header, a complete administration
page with a new entry in the menu, and of course the function that lists the unused tags.

 < ?php
/*
Plugin Name: Unused Tags
Plugin URI: http://example.com/
Description: Find unused tags and rename or delete them
Author: WROX
Author URI: http://wrox.com
*/

// Add an entry for our option page to the Posts menu
add_action(‘admin_menu’, ‘boj_utags_add_page’);
function boj_utags_add_page() {
 add_posts_page(‘Unused Tags’, ‘Unused Tags’, ‘manage_options’,
 ‘boj_utags’, ‘boj_utags_option_page’);
}

// Catch any boj_action parameter in query string
add_action(‘admin_init’, ‘boj_utags_do_action’);

// Proceed to requested boj_action if applicable
function boj_utags_do_action() {
 if(!isset($_REQUEST[‘boj_action’]))
 return;

 if(!current_user_can(‘manage_options’))
 wp_die(‘Insufficient privileges!’);

 $id = $_REQUEST[‘id’];
 $action = $_REQUEST[‘boj_action’];

 if($action == ‘done’) {
 add_action(‘admin_notices’, ‘boj_utags_message’);
 return;
 }

 check_admin_referer(‘boj_utags-’.$action.’_tag’.$id);

 switch($action) {
 case ‘rename’:
 $newtag = array(‘name’ = > $_POST[‘name’], ‘slug’ = > $_POST[‘name’]);
 wp_update_term($id, ‘post_tag’, $newtag);
 break;
 case ‘delete’:
 wp_delete_term($id, ‘post_tag’);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 break;
 }

 wp_redirect(add_query_arg(array(‘boj_action’ = > ‘done’)));

}

// Admin notice
function boj_utags_message() {
 echo “ < div class=’updated’ > < p > Action completed < /p > < /div > ”;
}

// Draw the tag management page
function boj_utags_option_page() {
 ? >
 < div class=”wrap” >
 < ?php screen_icon(); ? >
 < h2 > Unused Tags < /h2 >

 < ?php

 if($tags = boj_utags_find_orphans()):

 echo ‘ < p > You currently have ‘.count($tags). ‘ unused tags: < /p > ’;
 echo ‘ < ol > ’;

 foreach($tags as $tag) {
 $id = $tag- > term_id;
 $name = esc_attr($tag- > name);

 $delete_url= add_query_arg(array(‘boj_action’= > ’delete’,’id’= > $id));
 $nonced_url= wp_nonce_url($delete_url, ‘boj_utags-delete_tag’.$id);
 ? >
 < li >
 < form action=”” method=”post” >
 < ?php wp_nonce_field(‘boj_utags-rename_tag’.$id); ? >
 < input type=”hidden” name=”boj_action” value=”rename” / >
 < input type=”hidden” name=”id” value=” < ?php echo $id; ? > ” / >
 < input type=”text” name=”name” value=” < ?php echo $name; ? > ” / >
 < input type=”submit” value=”Rename” / > or
 < a href=” < ?php echo $nonced_url; ? > ” > delete < /a > this tag
 < /form >
 < /li >

 < ?php }

 else: ? >
 < p > You have no unused tags. < /p >

 < ?php endif; ? >

 < /ol >
 < /div >

Nonces ❘ 125

126 ❘ CHAPTER 6 PLUGIN SECURITY

 < ?php
}

// Find unused tags, return them in an array
function boj_utags_find_orphans() {
 global $wpdb;

 $sql = “SELECT terms.term_id, terms.name FROM {$wpdb- > terms} terms
 INNER JOIN {$wpdb- > term_taxonomy} taxo
 ON terms.term_id=taxo.term_id
 WHERE taxo.taxonomy = ‘post_tag’
 AND taxo.count=0”;

 return $wpdb- > get_results($sql);
}
? >

 Code snippet plugin - unused - tags.php

 Copy or download this plugin, activate it, and you can access a new page under the Posts menu that
resembles Figure 6 - 3:

 FIGURE 6 - 3

 Spot a few more good practices in this plugin:

 1. Function boj_utags_do_action() , which checks for the presence of a boj_action parameter
in the query string or the POST data, is hooked to action admin_init . This way, the plugin
actually does something only when the user is in the admin area. When viewing the public
part (the blog itself), no event is triggered. The gain here is negligible because the plugin is
simple, but this technique applied to complex plugins does speed up execution.

 2. When a tag has been deleted or renamed, the plugin redirects the user to the current page
with the additional query parameter ‘ boj_action=done ’ . Doing so, you prevent any
unwanted repeated action if the user accidentally reloads the page and resubmits data.
The function hooks into ‘ admin_notices ’ to display an informational message.

 Nonces in Ajax Scripts

 Ajax scripts are particular types of JavaScripts that enable updating a part of the browser ’ s screen
without reloading the entire page. Ajax scripts can consist of forms or links and as such need to
be protected with nonces as well.

 You learn how to add such nonces in Chapter 12, “ JavaScript and Ajax, ” which is entirely about
JavaScript and Ajax.

 DATA VALIDATION AND SANITIZATION

 As you read in the introduction of this chapter, the golden rule in data fi ltering is to consider all
data invalid unless it can be proven valid. Otherwise stated, now is a good time for some healthy
suspicion and a little bit of welcome paranoia.

 In this practical section, you now learn why data fi ltering is important, how to validate and sanitize
the various types of data your WordPress plugins process (raw text strings, emails, integers, and so
on), and what WordPress built - in function can help you do this.

 The Need for Data Validation and Sanitization

 Consider a few lines of simple and innocent looking HTML and PHP code:

 < ?php $name = $_POST[‘fullname’]; ? >

 < form action=”” method=”POST” >
 Full name:
 < input type=”text” name=”fullname” value=” < ?php echo $name; ? > ” / >
 < input type=”submit” value=”Save” / >
 < /form >

 Code snippet bad_form.php

 This minimal form has just one fi eld, named fullname, which is prepopulated with any previously
entered value. For future reference, name this form Bad Form.

 For instance, if you enter Ozh RICHARD as a full name and press
Save, everything seems fi ne with this form (see Figure 6 - 4).

 So, what could possibly go wrong with such a simple form?

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 6 - 4

Data Validation and Sanitization ❘ 127

128 ❘ CHAPTER 6 PLUGIN SECURITY

 The potential problem here is that inputs are not validated, and outputs are not sanitized. In other
words, consider the following:

 The script does not make sure that
the string entered actually looks like
a full name.

 The script does not make sure that
the string entered can be printed out
without breaking the form.

 To illustrate this trivial lack in security, input
the following full names and see the results
(see Figure 6 - 5):

 1. Nonmalicious input: Ozh “ Funny Guy ” RICHARD

 2. Malicious input: Ozh “ / > Password: < input name= “ password ” value= “ 123456 “

 3. Malicious input: Ozh “ < script > alert(‘XSS’); < /script >

 What just happened?

 Case 1 is an example of a legit, nonmalicious, yet form-breaking example: Although the data
entered is a valid full name, the lack of sanitization at output breaks the input fi eld because of the
quotation marks. A correct way to render the form in that case would have been to convert
these quotation marks into HTML entities.

 In case 2, the user has joined the Dark Side and deliberately tries to exploit the form. Again, the
quotation mark breaks the input fi eld, so the output shows another fi eld that would be actually
submitted if the user pressed Save again. Not only is the output not sanitized (by encoding
quotation marks before printing the value of the fi eld) but the input is also questionable and should
have been validated fi rst, for instance by removing all nonalphanumeric characters and stripping
HTML tags.

 Case 3 is a variation on the same principle: Instead of adding arbitrary content to the form, the user
here injects JavaScript that could, for instance, fetch a session cookie value from your site and send
it to another one.

 The third case is an example of Cross Site Scripting, or XSS: a vulnerability in web applications
that enables malicious attackers to inject client - side script into web pages viewed by other users. Via
XSS, an attacker can gain elevated access privileges to sensitive page content, session cookies, and a
variety of other information maintained by the browser on behalf of the user.

 These examples demonstrate how the lack of data validation measures can, at best, corrupt data or,
at worst, exploit security holes in your web applications.

➤

➤

 FIGURE 6 - 5

 At output, you must sanitize content before sending it to the user ’ s browser
screen. At input, you must validate data (make sure it is valid) or sanitize data
(fi x it to make it valid).

 Good Practice: Identifying Potentially Tainted Data

 Imagine you are coding a plugin with an interface asking users to enter their age and to pick a color
between red, green, or blue.

 Consider the following code fragment:

 < ?php

$clean = array();

// Age: positive integer only
$clean[‘age’] = absint($_POST[‘age’]);

// Color: red, green or blue only
switch($_POST[‘color’]) {
 case ‘red’:
 case ‘green’:
 case ‘blue’:
 $clean[‘color’] = $_POST[‘color’];
 break;
}

? >

 Notice how this validating snippet makes use of an array named $clean . This illustrates a good
practice that can help developers identify whether data is potentially unsanitary or can be considered
safe. Because you cannot be sure of what the submitted array $_POST contains, don ’ t validate it.
Instead, select the expected part of it.

 This snippet also introduces a WordPress function that is a convenient wrapper for PHP functions
 intval() and abs() , used to return a positive integer.

 You should never validate data and leave it in $_POST, $_GET or $_REQUEST
because it is important for developers to always be suspicious of data within
these superglobal arrays.

 Initializing variables, such as $clean at the beginning of the snippet here, is another good practice
because you make sure the result of your validating procedure contains only what you expect.

 Using PHP ’ s error_reporting and setting WordPress constant WP_DEBUG to true can help to enforce
the initialization of variables because a reference to an undefi ned variable generates a notice on the
screen. For more details about debugging, see Chapter 16.

 The previous snippet validated only data: User input is accepted if it is valid and ignored otherwise.
It does not sanitize, or “ fi x, ” the input: If incorrect data is submitted (such as the user entering a
string instead of their age), the resulting array $clean simply ignores the item.

Data Validation and Sanitization ❘ 129

130 ❘ CHAPTER 6 PLUGIN SECURITY

 You can write a similar code block to sanitize data instead of simply validating it:

 < ?php

$clean = array();

// Age: positive integer only
$clean[‘age’] = absint($_POST[‘age’]);

// Color: red, green or blue only. Default is blue.
switch($_POST[‘color’]) {
 case ‘red’:
 case ‘green’:
 $clean[‘color’] = $_POST[‘color’];
 break;
 case ‘blue’:
 default:
 $clean[‘color’] = ‘blue’;
 break;
}

? >

 Now, if users enter an invalid age, such as abc, the result will be 0. If they enter an invalid color (for
instance purple), the result will be blue because of the default statement.

 The validation philosophy applied here is called white listing: You accept data only from a fi nite list
of known and trusted values. The opposite, reject data from a fi nite list of untrusted values, is called
black listing, which is rarely a good idea. White listing is not always possible, but whenever you can
enforce this policy, you should.

 Validating or Sanitizing Input?

 Whether you want to validate or sanitize user input is a design decision and depends mostly on the
kind of data expected. Imagine a form containing a fi eld to receive an integer (age for instance), an
email address, and a longer paragraph for raw text with no HTML tags (such as a short bio).

 Before you decide that you will just validate or also sanitize data, the fi rst thing to consider is the
potential inconvenience of simply validating and rejecting invalid data submitted:

 In the age fi eld, the user has to re - enter a simple integer. No big deal and quickly done.

 In the bio fi eld, if the entire text is ignored because the user has used an HTML tag, this
may be a lot more annoying to start over and rewrite it. Here, sanitizing the input (stripping
HTML tags out) would probably make more sense.

 A second decisive factor to consider is your ability to interpret and guess what a sanitized value
would be:

 If the user enters ABC in the age fi eld, does that mean anything? You cannot sanitize here
because it ’ s impossible to deduce from invalid information what valid data could be. Your
only option is to validate and ignore unacceptable data.

➤

➤

➤

 On the contrary, if the user enters unauthorized HTML tags in the bio fi eld, you can strip
out HTML tags and propose valid sanitized data that will be close to what the user wanted
to input.

 A third characteristic to refl ect on is what you will do right away with the input data if you sanitize,
hence possibly modify it:

 If a slightly weird looking or badly formatted bio is published on a profi le page, this may
not be a severe incident (assuming the user can later edit and amend it, obviously).

 If the user enters an invalid email such as joe@joe,co.uk and you send a confi rmation
email to the sanitized but invalid joe@joeco.uk, the user will never get it. It would be a
better choice to validate only the email fi eld, thus rejecting invalid data and asking the
user to re - input it.

 Validating and Sanitizing Cookbook

 You now learn how to validate and sanitize various types of data, and what WordPress functions
exist to do so.

 Integers

 Most of the time, PHP functions such as intval() or is_int() can do the job:

 < ?php
$data = 43;

// validate integers
return(intval($data) == $data);

// sanitize integers
return(intval($data));
? >

 WordPress ’ s function absint() is also applicable whenever you want a positive integer, such as an age.

 The possible problem you may run into is when dealing with large numbers: 32 - bit systems have a
maximum signed integer range of – 2147483648 to 2147483647. So for example on such a system,
 intval(‘1000000000000’) will return 2147483647. On the same principle, the maximum signed
integer value for 64 - bit systems is 9223372036854775807.

 If you have to deal with large numbers, your best bet is to consider the data a string instead of an
integer, and make sure it consists only of digits:

 < ?php
$num = ‘100000000000000000’;

// Validate large integers
return(ctype_digit($num));
? >

➤

➤

➤

Data Validation and Sanitization ❘ 131

132 ❘ CHAPTER 6 PLUGIN SECURITY

 Note that the ctype library may not be available on all servers. Before using it for a particular
client, check that their server supports it.

 Arbitrary Pure Text Strings

 You often need to validate text strings of arbitrary length, such as a username or a country of
birth. PHP functions of the ctype_ family are fi ne for validating them. They return Boolean true
or false .

 If you are expecting only letters:

 < ?php
// Validate alphabetic strings
return(ctype_alpha($num));
? >

 If you are expecting alphanumeric strings, such as for a nickname (for example, “ Bob43 ”):

 < ?php
// Validate alphanumeric strings
return(ctype_alnum($num));
? >

 In version 5.2 and newer, PHP includes fi lter functions to validate various types
of data: integers, Booleans, emails, strings, and so on. You can learn more about
them at http://php.net/fi lter . WordPress does not use them though, as they
are still in development.

 Arbitrary Mixed Text Strings

 Text strings can also consist of special characters such as punctuation. WordPress offers a function
that is handy to sanitize general text strings from user input: sanitize_text_field() . This
function removes invalid UTF - 8 characters, converts single < into HTML entities, and removes all
HTML tags, line breaks, and extra white space.

 < ?php

var_dump(sanitize_text_field(“I am nice.\n Very < em > nice < /em > ! “));

// result:
// string(21) “I am nice. Very nice!”

? >

 In a less destructive manner, you may want to simply strip HTML tags but keep other formatting
such as line breaks. WordPress provides wp_strip_all_tags() because PHP ’ s built - in strip_tags()

does not properly fi lter out complex markup such as < script > < /script > as you can see in the
following example:

 < ?php

$test = ‘ < a href=”xx” > site < /a > bold < script > alert(“fail”) < /script > ’;

// PHP’s strip_tags()
var_dump(htmlentities(strip_tags($test)));
// result: string(33) “site bold alert(“fail”)”

// WordPress’ wp_strip_all_tags()
var_dump(htmlentities(wp_strip_all_tags($test)));
// result: string(9) “site bold”
? >

 Internal Identifi er Strings

 WordPress comes with a function named sanitize_key() used to sanitize internal identifi ers, such
as option names, which accepts lowercase characters, dashes, and underscores.

 < ?php
$data = ‘option_43;’;

// Validate:
return(preg_match(‘/^[a-z0-9-_]+$/’, $data));

// Sanitize:
return(sanitize_key($data));
? >

 The validating line introduces a powerful tool: regular
expression pattern matching. Basically, this line says
 “ return true if $data matches the pattern ” . This seemingly
cryptic pattern is constructed as shown in Figure 6 - 6:

 The four parts of this regular expression follow:

 1. The pattern delimiters. It can be any character and
is usually a forward slash / .

 2. When used as the fi rst character after the opening pattern delimiter, the caret ̂ identifi es
the beginning of the string. Similarly, when used as the last character before the closing
delimiter, a dollar sign $ means “ end of the string. ”

 3. The plus sign + means “ one or more of the preceding pattern. ”

 4. And fi nally the pattern itself, between square brackets: any character from lowercase a to
lowercase z, from 0 to 9, or a dash - , or an underscore _.

 You will use more complex regular expressions in the following examples.

 FIGURE 6 - 6

Data Validation and Sanitization ❘ 133

134 ❘ CHAPTER 6 PLUGIN SECURITY

 String Patterns

 Occasionally you need to validate or sanitize text strings that adhere to a predefi ned and known
pattern, such as dates of birth, credit card numbers, ZIP codes, or telephone numbers.

 Example 1: Telephone Number

 For example, you can now write a function to validate telephone numbers of the following form:
123 - 456 - 7890 (3 digits, dash, 3 digits, dash, and four digits).

 In regular expressions, \d means a digit (this is equivalent to [0 - 9] but shorter). If you expect
exactly three digits, you can use: \d{3} .

 Knowing this, you can now defi ne and test the following function:

 < ?php
// Validate phone numbers like 123-456-7890
function boj_validate_phone($num) {
 return preg_match(‘/^\d{3}-\d{3}-\d{4}$/’, $num);
}

// Test your function:

var_dump(boj_validate_phone(‘132-456-7890’));
// echoes: int(1)

var_dump(boj_validate_phone(‘555-8882’));
// echoes: int(0)
? >

 Example 2: Product Serial Number

 Now if you want to validate a product serial number such as A145 - B3D5 - KK43, what pattern can
you use?

 < ?php

// Validate product serial number like A145-B3D5-KK43
function boj_validate_serial($string) {
 return preg_match(‘/^[A-Z0-9]{4}-[A-Z0-9]{4}-[A-Z0-9]{4}$/’, $string);
}
? >

 Example 3: Dates

 In this third example, you can write a function to validate a date for an upcoming event. This one is
slightly trickier: The data must comply to the pattern mm/dd/yyyy but also be a real and future date.
(30/30/2010 cannot be accepted, for instance.)

 The pattern used to match the input will be \d{2}/\d{2}/\d{4} . Because this pattern contains
forward slashes, the regular expression delimiters will need to be another character, for instance the
exclamation mark ! (You can also escape the slashes in the pattern with backslashes, but it makes
the pattern even less readable: \d{2}\/\d{2}\/\d{4} .)

 To check if the date exists, use the PHP function strtotime() , which converts textual dates into a
UNIX timestamp if valid and into – 1 or false otherwise.

 The complete validating function would be the following:

 < ?php

// Validate future dates like mm/dd/yyyy.
// Returns true or an error message
function boj_validate_date($date) {
 // first test: pattern matching
 if(!preg_match(‘!\d{2}/\d{2}/\d{4}!’, $date))
 return ‘wrong pattern’;

 // second test: is date valid?
 $timestamp = strtotime($date);
 if(!$ timestamp)
 return ‘date invalid’;

 // third test: is the date from the past?
 if($timestamp < = time())
 return ‘past date’;

 // So far, so good
 return true;
}

// Test it:

var_dump(boj_validate_date(‘12/12/99’));
// string(12) “wrong pattern”

var_dump(boj_validate_date(‘35/30/1980’));
// string(12) “date invalid”

var_dump(boj_validate_date(‘03/30/1980’));
// string(9) “past date”

var_dump(boj_validate_date(‘03/30/2020’));
// bool(true)

? >

 Code snippet validate_date.php

 Because this function returns either the Boolean true for success, or an error message for any
further diagnosis, to validate a date you need to strictly compare the validated date with true ,
using the triple equal sign:

 < ?php

$date = ‘30/30/3030’;

if(boj_validate_date($date) === true) {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Data Validation and Sanitization ❘ 135

136 ❘ CHAPTER 6 PLUGIN SECURITY

 // date is valid
} else {
 // date is invalid
}
? >

 Regular expressions are an extremely powerful tool designed to match any structured pattern. You
can fi nd more about this subject at http://php.net/pcre .

 Email Strings

 Emails are a type of pattern text string that is easy to validate or sanitize within WordPress, thanks
to functions is_email() and sanitize_email() :

 < ?php

$email = ‘wrox@example.com’;

// Validate:
return(is_email($email));

// Sanitize:
return(sanitize_email($email));
? >

 Function is_email() returns either false or the email address if valid. Consider the following
examples:

 < ?php

var_dump(is_email(‘wrox@example’));
// bool(false)

var_dump(is_email(‘wrox@example.com’));
// string(11) “wrox@example.com”
? >

 To use this function, you need to strictly compare an email and the result of is_email() :

 < ?php

if(is_email($email) === email) {
 // email seems valid
} else {
 // email is invalid
}
? >

 Be aware that in a LAN environment and some corporate networks, possibly functional email
addresses such as admin@localhost or webmaster@server will not be considered valid. In such
a case, you can simply check for the presence of the @ character, or maybe if possible test against a
fi nite list of valid email addresses.

 Function sanitize_email() either returns an empty string or a sanitized email address, depending
on how malformed the input was. Consider the following sample outputs:

 < ?php

var_dump(sanitize_email(‘ozh@ozh’));
// string(0) “”

var_dump(sanitize_email(‘ozh@ozh..org’));
// string(0) “”

var_dump(sanitize_email(‘(ozh)@(ozh).org’));
// string(11) “ozh@ozh.org”

var_dump(sanitize_email(‘ozh@ozh.org’));
// string(11) “ozh@ozh.org”
? >

 In any case, you should compare the sanitized emails with the original input, and if different ask the
users to confi rm their address.

 Note that these functions do not check whether the email is actually an existing address, but only
whether the pattern looks correct: one or more allowed characters, an at sign @ , more characters,
a dot, and again a few characters for the top - level domain. A blatantly fake email address such as
kk@kk.kk will pass the test.

 The only way to test the existence of an email address is to send a mail to that
address and ask the recipients to confi rm they have received it by completing an
action (usually clicking on a link that contains a unique identifi er).

 HTML (or XML)

 HTML in this section can either be a full HTML fragment (a comment on a blog post, for instance),
or single nodes, that is, an HTML element with text and attributes.

 HTML Fragments

 HTML fragments can be sanitized at input with WordPress function force_balance_tags() ,
although this cannot be considered as an HTML validator but more a helper function to achieve
validity. This function fi nds incorrectly nested or missing closing tags and fi xes the markup:

 < ?php

// 1. Fixing missing closing tags:

$html = ‘ < p > Please close my < strong > tags!’;
var_dump(force_balance_tags($html));

Data Validation and Sanitization ❘ 137

138 ❘ CHAPTER 6 PLUGIN SECURITY

// string(45) “ < p > Please close my < strong > tags! < /strong > < /p > ”

// 2. Fixing incorrectly nested tags:

$html = ‘ < p > Please < strong > < em > fix < /strong > < /em > nesting! < /p > ’;
var_dump(force_balance_tags($html));
// string(52) “ < p > Please < strong > < em > fix < /em > < /strong > nesting! < /p > ”

? >

 WordPress ships with a script named KSES (a recursive acronym: KSES Strips Evil Scripts) that
should process and sanitize all untrusted HTML, both at input and output. The wrapper function,
 wp_kses() enables advanced fi ltering of HTML snippets, for instance with a custom set of
authorized tags.

 You can now write a function to strip all HTML tags except < strong > and < a href=’ ’ title=’’ > .
All other tags (< em > , < b > . . .) or attributes (class=’’ , style=’’ , . . .) need to be taken out.

 First, defi ne an array of allowed tags and attributes:

 < ?php

$allowed = array(
 ‘strong’ = > array(),
 ‘a’ = > array(
 ‘href’ = > array(),
 ‘title’ = > array()
)
);
? >

 You are now ready to fi lter and sanitize HTML fragments:

 < ?php

$html = ‘ < a href=”#” class=”external” > site < /a >
 bold? < strong > bold! < /strong > ’;

var_dump(wp_kses($html, $allowed));
// string(58) “ < a href=”#” > site < /a > bold? < strong > bold! < /strong > ”
? >

 Notice how selective this function is in removing tags and attributes as you have defi ned them. This
function is used for instance to fi lter comments and enable only a minimal common set of HTML tags.

 Note that the KSES library in WordPress defi nes default sets of HTML tags and attributes, as you can
see at the beginning of the fi le wp - includes/kses.php. The global variable $allowedtags contains a
rather restrictive set of tags that are typically what you will want to accept in comments or user input.

 Using the function wp_kses_data() and passing as a single argument the chunk of HTML you
want to sanitize, you will make use of this default list:

 < ?php

$html = ‘ < a href=”http://site.com” > site < /a >
 < script src=”script.js” > < /script >
 < img src=”image.png” / >
 < junk > random < /junk > ’;

var_dump(wp_kses_data($html));
// string(41) “ < a href=”http://site.com” > site < /a > random”
? >

 HTML Nodes

 A node is a part of an HTML (or, again, XML)
document. It consists of three parts, as shown in
Figure 6 - 7.

 1. The element node (span , h1 , em . . . or any
custom XML element)

 2. The attribute node (class , style , title , alt . . .)

 3. The text node (any text found outside attributes and elements)

 What you need to sanitize are the attribute and the text nodes at output to make sure they are valid
and cannot break the display.

 Consider the following code block, and try to spot its weaknesses before you read more:

 < h1 > < ?php echo $page_title; ? > < /h1 >
 < a href=”#anchor” title=” < ?php echo $link_title; ? > ” > link < /a >

 In a similar manner to how the previous example Bad Form was breakable, the problem here is that
the text node $page_title and the attribute node $link_title are not sanitized for display, which
can produce unexpected and potentially dreadful results with values such as the following:

 < ?php

$page_title = ‘break < /h1 > < h1 > the tag’;
$link_title = ‘” onmouseover=”alert(\’XSS\’);’;

? >

 WordPress contains two functions specifi cally designed to sanitize HTML attributes and text nodes,
escape illegal characters, and convert to HTML entities when needed: esc_attr() and esc_html() .
The same code block, now bullet proof, would be the following:

 < h1 > < ?php echo esc_html($page_title;) ? > < /h1 >
 < a href=”#anchor” title=” < ?php echo esc_attr($link_title;) ? > ” > link < /a >

 FIGURE 6 - 7

Data Validation and Sanitization ❘ 139

140 ❘ CHAPTER 6 PLUGIN SECURITY

 In a localized environment, functions esc_html() and esc_attr() have variations that
can translate and escape at the same time (such as esc_html_e() for example). Chapter 5,
 “ Internationalization, ” has a detailed description of these functions.

 URLs

 Whether they are used as output in an HTML attribute node (< a href= “ “ >) or as standalone
information (for example a fi eld asking for a site URL in a form), URLs should be sanitized for
input and output using WordPress ’ function esc_url() . This function checks and cleans a URL
by removing unacceptable characters and optionally fi ltering protocols.

 For output, use the function as following:

 < ?php
// dangerous URL
$url = ‘javascript:alert(“XSS”);’;
? >

 < a href=” < ?php echo esc_url($url); ? > “ > Link Text < /a >

 In this example, the link would be safely displayed with an empty href attribute. For input, pass
either one parameter (the URL) or two parameters (the URL and an array of allowed protocols) to
sanitize data before storing or returning it.

 In the following example, see how various URLs are sanitized:

 < ?php

$url1 = ‘http://example.com/” < script > alert(\’XSS\’) < /script > ’;
var_dump(esc_url($url1));
// string(54) “http://example.com/scriptalert(‘XSS’)/script”

$url2 = ‘http://example.com/” & lt;script & gt;alert(\’XSS\’) & lt;/script & gt;’;
var_dump(esc_url($url2));
// string(90) “http://example.com/ & lt;script & gt;alert(‘XSS’) & lt;/script & gt;”

$url3 = ‘onmouseover=”alert(\’XSS\’)’;
var_dump(esc_url($url3));
// string(41) “http://onmouseover=alert(‘XSS’)”

$url4 = ‘c:\dir\dir\dir\dir’;
var_dump(esc_url($url4));
// string(0) “”

$url5 = ‘http://ex[]amp[]le.co[]m/’;
var_dump(esc_url($url5));
// string(19) “http://example.com/”
? >

 As you can see, the purpose of function esc_url() is not to make sure a URL is valid (for instance,
 http://onmouseover=alert(‘XSS’) does not look like one) but to sanitize it drastically so that it is
harmless when used.

 With a second array parameter, this function is also great at limiting the protocols you want to
authorize:

 < ?php

$allowed = array(‘http’, ‘https’, ‘ftp’);

$url1 = ‘https://example.com’;
var_dump(esc_url($url1, $allowed));
// string(19) “https://example.com”

$url2 = ‘irc://example.com’;
var_dump(esc_url($url2, $allowed));
// string(0) “”

$url3 = ‘xyz123://example.com’;
var_dump(esc_url($url3, $allowed));
// string(0) “”
? >

 URLs in a Database

 Function esc_url() converts ampersands and single quotes into HTML entities to make sure
displaying the URL will not break any output. To sanitize a URL for database usage, prefer
 esc_url_raw() , which sanitizes without entity translation:

 < ?php

$url = “http://ex[a]mple.com/?q=1 & s=2’”;

var_dump(esc_url($url));
// string(38) “http://example.com/?q=1 & #038;s=2 & #039;”

var_dump(esc_url_raw($url));
// string(28) “http://example.com/?q=1 & s=2’”
? >

 URLs in Redirects

 You may have to redirect users to a page where the location depends on a user generated value, such
as “ http://example.com/profile.php?user=$user “ . The wrong way to do it in a WordPress
environment would be to simply use header redirection:

 < ?php
header(“Location: http://example.com/profile.php?user=$user”);
? >

 Omitting to sanitize variable $user could allow unwanted redirection on some server
setups (depending on the version of PHP installed), with values such as “ Joe\nLocation:
http://evilsite/ “ .

Data Validation and Sanitization ❘ 141

142 ❘ CHAPTER 6 PLUGIN SECURITY

 The correct way to handle redirections within WordPress is to use its function wp_redirect() ,
which fi rst sanitizes the redirection location:

 < ?php
wp_redirect(“http://example.com/profile.php?user=$user”);
? >

 JavaScript

 Inline JavaScript (such as onclick= “ doSomething(); “ for example) is another type of HTML node
attribute that gets particular treatment and its own sanitization function: esc_js() .

 You can use this function to ensure that JavaScript snippets using dynamic variables from PHP will
not break, as in the following example:

 < ?php
$user = ‘Joe’;
? >

 < script type=”text/javascript” >
var user = ‘ < ?php echo esc_js($user); ? > ’;

function confirm_delete() {
 return confirm(‘Really delete user ‘+user+’?’);
}
 < /script >

 < a href=” < ?php echo esc_url(“delete.php?user=$user”); ? > ”
 onclick=”javascript:return(confirm_delete())”
 title=”Delete” > Delete user < ?php echo esc_html($user) ? > < /a >

 Notice how this neat example uses different esc_ functions to sanitize the various parts of the
 “ delete ” link.

 Server or Environment Variables

 The superglobal array $_SERVER , as its name may not imply, contains information received by the
server from the client, that is, a user ’ s browser. As such, consider its values unsafe. Depending on
what server variable you need, be sure to always sanitize it with the appropriate functions.

 For instance, if you want to display on a page the referring URL that presumably sent a visitor to
your site, don ’ t use the following:

 < ?php if(isset($_SERVER[‘HTTP_REFERER’])) { ? >
Welcome visitor from < ?php echo $_SERVER[‘HTTP_REFERER’]; ? > !
 < ?php } ? >

 Because the referrer URL is extremely easy to spoof and may contain anything a malicious user can
imagine, let esc_url() handle it for you:

 < ?php if(isset($_SERVER[‘HTTP_REFERER’])) { ? >
Welcome visitor from < ?php echo esc_url($_SERVER[‘HTTP_REFERER’]); ? > !
 < ?php } ? >

 In the same way, don ’ t trust the user - agent signature stored in $_SERVER[‘HTTP_USER_AGENT’] . If you
want to display this data, you should treat it as unsafe HTML and sanitize it with wp_kses() fi rst.

 Other often - used server variables are $_SERVER[‘REQUEST_URI’] or $_SERVER[‘PHP_SELF’] ,
containing the location of the currently loaded page or executed script. When not sanitized, these
server variables are easily exploitable. For example, craft the following form that will point to itself
in its action parameter:

 < form action=” < ?php echo $_SERVER[‘PHP_SELF’]; ? > ” method=”post” >
 < input type=”text” name=”fullname” / >
 < input type=”submit” value=”Save” / >
 < /form >

 Save this form as self_form.php, and then point
your browser to http://localhost/self_form
.php/ “ > < script > alert(1337) < /script > and see
what happens in Figure 6 - 8.

 The best option is to always hardcode form action
parameters, or to leave the form action empty (< form
action= “ ” method= “ post “ >) to send data back to
the same place. If you need to make it dynamic and
use a server variable, sanitize it with esc_url() .

 Cookies

 Just as you must not trust $_GET or $_POST , be suspicious toward the $_COOKIE array. Indeed,
cookies are simple text fi les stored on the client ’ s computer and as such easy to edit with tools such
as Firebug for Firefox. Give cookies the same treatment as data from a submitted form: Validate
and sanitize values.

 FIGURE 6 - 8

 In PHP, $_REQUEST usually contains $_GET , $_POST , and $_COOKIE . Note that
upon start, WordPress removes the $_COOKIE array from $_REQUEST . Thus, if you
need to check the value of a cookie, do not rely on $_REQUEST in a WordPress
environment, but check $_COOKIE directly.

Data Validation and Sanitization ❘ 143

144 ❘ CHAPTER 6 PLUGIN SECURITY

 Arrays of Data

 You can easily validate or sanitize an array of similar data using PHP ’ s function array_map() .

 Imagine for instance a form where a user has to enter several positive integers (age, number of
children, and household income). To sanitize this information, you need absint() . You can process
each data one by one, or use this more compact and effi cient code:

 < ?php

// sanitize the whole $_POST array
$_POST = array_map(‘absint’, $_POST);

// extract only expected values
$clean = array();
$clean[‘age’] = $_POST[‘age’];
$clean[‘numchild’] = $_POST[‘numchild’];
$clean[‘income’] = $_POST[‘income’];
? >

 This technique is particularly useful when you don ’ t know how many values you need to sanitize.
Picture a form textarea fi eld in which you would ask users to enter a list of URLs, such as their
favorite sites, one per line.

 To sanitize such a list, you can split it into individual URLs and pass the resulting array to
 esc_url() all at once:

 < ?php

$clean_urls = array();

// Split the textarea value into an array of URLs
$urls = split(“\n”, $_POST[‘urls’]);

// Sanitize the whole array
$clean_urls = array_map(‘esc_url’, $urls);
? >

 Data from a Defi ned Set

 Even when your form seems to lock down the number of possible values of
a given fi eld, such as a radio button being only Yes or No, always validate
the submitted value. Indeed, it ’ s trivial to post arbitrary data to any form,
as the following example demonstrates.

 First, create a script showing a simple form with radio buttons, check boxes,
and a drop - down, similar to Figure 6 - 9. To mimic storing information, the
script can also save any submitted information to a local text fi le.

 FIGURE 6 - 9

 < ?php

if($_POST) {
 $post = print_r($_POST, true);
 error_log($post, 3, dirname(__FILE__).’/post.log’);
}

? >

 < form action=”” method=”post” >

 Gender:
 < input type=”radio” name=”gender” value=”male” / > male
 < input type=”radio” name=”gender” value=”female” / > female

 Food dislikes:
 < input type=”checkbox” name=”food[]” value=”spinach”/ > spinach
 < input type=”checkbox” name=”food[]” value=”anchovy”/ > anchovy
 < input type=”checkbox” name=”food[]” value=”liver”/ > liver

 Country of residence:
 < select name=”country” >
 < option value=”usa” > USA < /option >
 < option value=”canada” > Canada < /option >
 < option value=”uk” > United Kingdom < /option >
 < option value=”other” > Other < /option >
 < /select >

 < input type=”submit” / >

 < /form >

 Code snippet locked_form.php

 At the beginning of the script, if array $_POST is defi ned, its content is sent to a fi le named ‘ log.txt ’
in the same directory. You can learn more about error and message logging in Chapter 16, which is
about debugging and code optimization.

 This form looks pretty much locked down: Every fi eld value belongs to a limited set, and at fi rst
you would probably confi dently think that the submitted data will always be along the lines of the
following array as read in log.txt:

Array
(
 [gender] = > male
 [food] = > Array
 (
 [0] = > anchovy
 [1] = > liver
)
 [country] = > usa
)

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Data Validation and Sanitization ❘ 145

146 ❘ CHAPTER 6 PLUGIN SECURITY

 Just because the input fi elds seem to enforce values does not mean you cannot post anything to
the form. You can now take the role of a malicious user and try to abuse this seemingly locked -
 down form with a script that posts random data to it:

 < form action=”locked_form.php” method=”post” >
 < input name=”gender” value=”hello” / >
 < input name=”food[]” value=” < script > alert(‘hello’); < /script > ” / >
 < input name=”country” value=”bleh” / >
 < input name=”random” value=”1337” / >
 < input type=”submit” / >
 < /form >

 Code snippet locked_form_abuse.php

 Notice how values passed to the script referenced in the action attribute contain totally random
values that could not be generated by the legitimate form.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 All it takes is a plain HTML fi le, hosted anywhere including a desktop
computer with no web server, to submit any information to a script. Never
take for granted that all users will always post only what you expect.

 Back to the fi rst form, locked_form.php: You can now make it secure and sanitize submitted values
before storing them. Because you know the different values every fi eld can take, you can code
effi cient and straightforward fi lters, using a white list principle. The storing code block will now be
the following:

 < ?php

if($_POST) {

 $clean = array();

 // Gender: 2 possible values, default to ‘male’
 $clean[‘gender’] = ($_POST[‘gender’] == ‘female’ ? ‘female’ : ‘male’);

 // Food: arbitrary number of possible values, no default
 $foods = array(‘spinach’, ‘anchovy’, ‘liver’);
 if(in_array($_POST[‘food’], $foods))
 $clean[‘food’] = $_POST[‘food’];

 // Country: arbitrary number of possible values, default to ‘other’
 switch($_POST[‘country’]) {
 case ‘canada’:
 case ‘uk’:
 case ‘usa’:
 $clean[‘country’] = $_POST[‘country’];
 break;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 default:
 $clean[‘country’] = ‘other’;
 }

 $post = print_r($clean, true);
 error_log($post, 3, dirname(__FILE__).’/post.log’);

}

? >

 Code snippet locked_form_secure.php

 Notice how different test syntaxes are involved. The fi rst comparison and sanitization, for gender,
uses PHP ’ s ternary operator. This compact line means, Is $_POST[‘gender’] female? Then
 $clean[‘gender’] equals female, otherwise it will equal male.

 Database Queries

 Database queries are obviously crucial strings regarding security. Consider for instance a web
application in which the following query would authenticate users after they submit their login
and password:

 < ?php
$sql = “SELECT * FROM users
 WHERE `user_login` = ‘$login’ AND `user_pass`= ‘$password’”;
? >

 Because that SQL statement is not escaped and not sanitized, a malicious user could log in with the
following credentials:

 < ?php
$login = ‘anything’;
$password = “123456’ OR 1=’1”;
? >

 Indeed, setting these variables, the SQL statement becomes a simple 1=1 condition, which is
obviously always true:

SELECT * FROM users
WHERE `user_login` = ‘adminzzz’
AND `user_pass`= ‘123456’
OR 1=’1’

 This would be a successful SQL injection attack: A user manipulates the statement performed on the
database, as humorously depicted in Figure 6 - 10, a strip by Randall Munroe, titled “ Exploits of a
Mom ” and reproduced here with permission (original URL: http://xkcd.com/327/).

Data Validation and Sanitization ❘ 147

148 ❘ CHAPTER 6 PLUGIN SECURITY

 Opportunely, WordPress comes with functions to help you sanitize your queries properly.

 Function esc_sql() escapes content for inclusion into the database, which means it adds backslashes
before characters that need to be quoted in queries (quotes and backslashes). The particularity of
 esc_sql() is that it can process indifferently a query string or an array of query strings.

 < ?php

$login = ‘back\slash’;
$sql = ‘SELECT * FROM `users` WHERE `login` = “’. esc_sql($login) .’”’;
var_dump($sql);
// string(55) “SELECT * FROM `users` WHERE `login` = “back\\slash””
? >

 Function like_escape() takes care of escaping text used in LIKE clauses, where special characters
percent % and ampersand _ are used:

 < ?php

$pattern = ‘joe’;

$like = like_escape(‘LIKE “%’.$pattern.’%”’);

$sql = ‘SELECT * FROM `users` WHERE `username` ‘.$like;

var_dump($sql);
// string(53) “SELECT * FROM `users` WHERE `username` LIKE “\%joe\%””
? >

 Function sanitize_sql_orderby() sanitizes ORDER BY clauses before they are included into an
SQL string:

 < ?php

$order_by = ‘last_name’;
$order_sort = ‘DESC’;

 FIGURE 6 - 10

$order = sanitize_sql_orderby(“$order_by $order_sort”);

$sql = ‘SELECT * FROM `users` ORDER BY ‘. $order;

var_dump($sql);
// string(45) “SELECT * FROM `users` ORDER BY last_name DESC”
? >

 WordPress provides much more than simple escaping functions to sanitize queries: It has a complete
set of functions designed to help you securely format your SQL statements.

 FORMATTING SQL STATEMENTS

 WordPress offers numerous functions you learn to use throughout this section to access information
from the database.

 The $wpdb Object

 All database interactions within WordPress can be done through a class called wpdb , which (if you
have some PHP background) you will see derives from the popular ezSQL class.

 You should not run SQL queries using PHP ’ s functions such as mysql_query() or mysql_fetch_
array() for two reasons:

 WordPress ’ wpdb class provides enhanced security functions to protect your queries against
SQL injection attacks.

 It is possible for a blog owner to replace the database engine from MySQL to something else
(PostgreSQL, for instance) and MySQL functions could therefore be not be functional.

 Methods from this class, which you learn to use in this section, should not be called directly:
Instead, always use the $wpdb object WordPress instantiates on every page load.

➤

➤

 Don ’ t forget to “ globalize ” $wpdb (that is, adding line global $wpdb;) before
using it within your functions.

 The $wpdb object can be used to access data from any table in the database used by WordPress: All
the standard tables created upon installation or upgrade of your blog, but also any custom table
created by a plugin, for example. In Chapter 7, “ Plugin Settings, ” you learn when and how to create
such a custom table.

Formatting SQL Statements ❘ 149

150 ❘ CHAPTER 6 PLUGIN SECURITY

 Why wpdb Methods Are Superior

 The $wpdb object contains several methods you can use to read, insert, update, or delete information
from tables. The following examples would produce the same results, but notice how readable and
foolproof it gets:

 < ?php

// Example 1
mysql_connect(DB_HOST, DB_USER, DB_PASSWORD) or
 die(“Could not connect: “ . mysql_error());
mysql_select_db(DB_NAME);
mysql_query(“UPDATE wp_posts SET post_title= ‘$newtitle’ WHERE ID= $id”);

// Example 2
$newtitle = esc_sql($newtitle);
$my_id = absint($my_id);
$wpdb- > query(“UPDATE $wpdb- > posts SET post_title=’$newtitle’ WHERE ID=$id”);

// Example 3
$new_values = array(‘post_title’ = > $newtitle);
$where = array(‘ID’ = > $my_id);
$wpdb- > update($wpdb- > posts, $new_values, $where);
? >

 What do these three examples tell you?

 Example 1, the old manual way, is cumbersome: Establish a connection to the database
and run the query. The query itself is questionable: The table name is hardcoded even
though a blog owner can change the table prefi x; variables $newtitle and $id are not
sanitized.

 Example 2 is good: Variables are sanitized with functions you ’ ve just learned to use, the
table name complies with the local table prefi x, and the query is run through the $wpdb
object with the update() method.

 Example 3 is just as good but even easier: Defi ne an array of values to update in column = >
value pairs, defi ne an array of WHERE clause with the same structure, and let the method
handle sanitization and query for you. You don ’ t need to remember the exact SQL syntax;
you don ’ t need to make mental notes about data sanitization; and you completely rely on
the WordPress API.

➤

➤

➤

 Always use the $wpdb methods: These functions can make your code easier to
read, faster to maintain, and safer to execute.

 All - in - One Methods

 As in the previous example #3, all - in - one methods are foolproof functions that exempt you from
memorizing the boring parts (SQL syntax, sanitization functions) and manage everything for you.
Count on update() and insert() .

 $wpdb - > update()

 This method needs three parameters:

 A table name. (Remember to use $wpdb - > prefix .)

 An array of data to update, in column = > value pairs, unescaped.

 An array of WHERE clauses, in unescaped column = > value pairs. If there are several clauses,
they will be joined with an AND .

 You can optionally pass two other parameters:

 An array of formats to be mapped to each of the data to update (or a string instead of an
array if the same format is to be used for all the values). A format can be ‘ %d ’ for decimal,
 ‘ %s ’ for string, or ‘ %f ’ for fl oat. If omitted, all values will be treated as strings, unless
otherwise specifi ed in WordPress standard table defi nitions.

 An array of formats (or a string if one format applies) to be mapped to each of the values in
the WHERE clause. If omitted, they get a string treatment.

 To exemplify the usage of this function, imagine a table named wp_custom with a simple structure,
as in Table 6 - 1:

➤

➤

➤

➤

➤

 TABLE 6 - 1: table wp_custom Structure

 COL_ID COL_STRING COL_INTEGER

 int(11) NOT NULL AUTO_INCREMENT varchar(100) NOT NULL int(11)

 You can now update a row of table wp_custom , where the ID is 1, the value in the second column is
a string, and the value in the third column is an integer:

 < ?php

$values = array(
 ‘column1’ = > ‘some string’,
 ‘column2’ = > 43
);

$where = array(

Formatting SQL Statements ❘ 151

152 ❘ CHAPTER 6 PLUGIN SECURITY

 ‘ID’ = > 1
);

$formats_values = array(‘%s’, ‘%d’);

$formats_where = array(‘%d’);

$wpdb- > update($wpdb- > custom, $values, $where, $formats_values, $formats_where);
? >

 As you can see, this method grants a structured way to declare the SQL query, in particular the
format of the data to sanitize. The method returns either false on error, or an integer with
the number of rows affected by the update.

 Do not hardcode the WordPress database table prefi x (usually “wp_ “) into your
plugins. Be sure to use the $wpdb - > prefix variable instead. Not only will it use
the proper prefi x, but it will also include the proper blog ID in a multisite
environment.

 $wpdb - > insert()

 You can use this method to insert data in a similar operation, with three parameters:

 A table name

 An array of data to insert, in unescaped column = > value pairs

 An optional array of formats to be mapped to these values, otherwise treated and sanitized
as strings

 Use this method to insert in a row in the same $wpdb - > custom table, the fi rst fi eld being a string
and the second one being an integer:

 < ?php

$values = array(
 ‘column1’ = > ‘new string’,
 ‘column2’ = > 44
);

$formats_values = array(‘%s’, ‘%d’);

$wpdb- > insert($wpdb- > custom, $values, $formats_values);
? >

 Similarly to the update() method, this function also returns false on error or an integer for the
number of rows inserted.

➤

➤

➤

 Common Methods

 Not all the queries you ’ ll run will be simple UPDATE or INSERT , so the wpdb class provides numerous
other methods you ’ ll peruse now, for instance to fetch a single value or an entire row, or perform
custom complex statements.

 SELECT a Variable

 The get_var() method returns a single variable from WordPress ’ database (or NULL if no value
is found).

 For instance, to fetch the number of posts you have published on your blog, you can use the
following query:

 < ?php

$sql = “SELECT COUNT(ID) FROM {$wpdb- > posts}
 WHERE post_status = ‘publish’ AND post_type = ‘post’”;

$num_of_posts = $wpdb- > get_var($sql);
? >

 SELECT a Row

 To fetch an entire row (or parts of a row), use method get_row() , which can return results as an
object, an associative array, or a numerically indexed array. The syntax of this method follows:

 < ?php
$wpdb- > get_row($sql, $output_type, $row_offset);
? >

 This methods requires the following parameters:

 $sql — The SQL query

 $output_type — Optionally, one of the three predefi ned constants OBJECT (return result
as an object), ARRAY_A (return as an associative array), or ARRAY_N (numerically indexed
array). If omitted, the default is OBJECT .

 $row_offset — Optionally, the desired row, default value being 0.

 For example, fetch from the users table the email and URL of user ‘ admin ’ and compare different
output types. The SQL statement for such a query follows:

 < ?php
$sql = “SELECT `user_email`, `user_url`
 FROM $wpdb- > users
 WHERE user_login = ‘admin’”;

$object = $wpdb- > get_row($sql, OBJECT);
$array_a = $wpdb- > get_row($sql, ARRAY_A);
$array_n = $wpdb- > get_row($sql, ARRAY_N);
? >

➤

➤

➤

Formatting SQL Statements ❘ 153

154 ❘ CHAPTER 6 PLUGIN SECURITY

 Examine now with var_dump() the nature of each result, depending on the output type selected:

 < ?php

var_dump($object);
/*
object(stdClass)#824 (2) {
 [“user_email”] = > string(17) “ozh@ozh.org”
 [“user_url”] = > string(21) “http://ozh.org/”
}
*/

var_dump($array_a);
/*
array(2) {
 [“user_email”] = > string(17) “ozh@ozh.org”
 [“user_url”] = > string(21) “http://ozh.org/”
}
*/

var_dump($array_n);
/*
array(2) {
 [0] = > string(17) “ozh@ozh.org”
 [1] = > string(21) “http://ozh.org/”
}
*/
? >

 The nature of the result can affect how you now access individual records. For instance, to get the
email address of the selected user, you can use one of the three following syntax constructions:

 < ?php
$email = $object- > user_email;

$email = $array_a[‘user_email’];

$email = $array_n[0];
? >

 Notice how the fi rst two syntaxes refer to ‘ user_email ’ , which is the name of the column in
the database.

 When fetching values from a database, prefer results returned as an object or an
associative array. These two output formats can retain the database column
names for better clarity.

 SELECT a Column

 This method can select an entire column, or part of a column, and return a dimensional array. It
needs a query as fi rst parameter and an optional column offset as second parameter, used if more
than one column is returned. (The default value is zero.)

 Imagine you want to send an email to all registered users of your WordPress setup, telling them the
site will go temporarily offl ine for maintenance.

 First, query the $wpdb - > users table and get column ‘ user_email ’ :

 < ?php

$sql = “SELECT `user_email` FROM $wpdb- > users”;

$emails = $wpdb- > get_col($sql);
? >

 Now, send the short email notice to each of these registered users:

 < ?php

$subject = ‘Blog maintenance’;
$message = ‘Dear user, the blog will be offline for 15 minutes.’;

foreach($emails as $email) {
 wp_mail($email, $subject, $message);
}
? >

 SELECT Generic Results

 If you need to fetch generic multiple row results, you can use method get_results() . This function
needs a SQL statement parameter of course, and like get_row() an optional output format between
 OBJECT , ARRAY_N or ARRAY_A (as discussed earlier in the “ Select a Row ” section).

 As an example of a more complex query, use this method to get the number of posts you have
published each year on your blog:

 < ?php

$sql = “SELECT YEAR(post_date) AS `year`, count(ID) as posts
 FROM $wpdb- > posts
 WHERE post_type = ‘post’ AND post_status = ‘publish’
 GROUP BY YEAR(post_date)
 ORDER BY post_date DESC”;

$results = $wpdb- > get_results($sql, ARRAY_A);
? >

Formatting SQL Statements ❘ 155

156 ❘ CHAPTER 6 PLUGIN SECURITY

 If you use print_r($results) , the resulting associative array will be something like the
following:

Array (
 [0] = > Array (
 [year] = > 2010
 [posts] = > 13
)
 [1] = > Array (
 [year] = > 2009
 [posts] = > 37
)
 [2] = > Array (
 [year] = > 2008
 [posts] = > 9
)
)

 To display a human readable summary of your yearly activity, you can loop over each subarray of
 $results , like the following:

 < ?php

foreach($results as $sum) {
 $year = $sum[‘year’];
 $count = $sum[‘posts’];
 echo “ < p > Posts published in $year: $count < /p > ”;
}
? >

 A good habit is to SELECT only what you need and avoid the lazy “ SELECT *
FROM ” . Trimming your selection only to fi elds you need helps to reduce the
database ’ s load and memory usage.

 This is especially crucial in shared host environments, where hundreds of other processes may
be polling data from or writing to the database at the same time. Learning how to minimize hits
against the database will ensure that your plugin will not be the one blamed for abuse of resources.

 Generic Queries

 Of course, common methods of the $wpdb object are not limited to SELECT statements. Any query
can be processed by method query() , which returns an integer corresponding to the number of
rows affected or selected, or false if an error occurred.

 For illustration, you can delete all comments from your blog if they point to an unwanted website:

 < ?php

$sql = “DELETE from wp_comments
 WHERE comment_author_url
 LIKE ‘%evil.example.com%’”;

$deleted = $wpdb- > query($sql);
? >

 Now the variable $deleted is either false if there were an error (for instance if the table prefi x is not
 ‘ wp_ ’ and thus table ‘ wp_comments ’ does not exist) or an integer of the number of records deleted.

 You can also use the query() method in place of any other method when you need more fl exibility
in the syntax and parameters. In this practical example, you can disable comments on all posts older
than 90 days:

 < ?php

$sql = “UPDATE $wpdb- > posts
 SET comment_status = ‘closed’
 WHERE post_date < DATE_SUB(NOW(), INTERVAL 90 DAY)
 AND post_status = ‘publish’”;

$wpdb- > query($sql);
? >

 As a last example, imagine a friend of yours who is also a frequent commentator on your site just
moved his personal blog to another URL. You can hopefully update all comment author URLs with
a single query:

 < ?php

$sql = “UPDATE $wpdb- > comments
 SET comment_author_url =
 REPLACE(comment_author_url, ‘http://oldsite/’, ‘http://newsite/’)”;

$wpdb- > query($sql);
? >

 Protecting Queries Against SQL Injections

 You may have noticed that the previous queries are not sanitized. This was indeed not needed
because they are completely hardcoded and do not contain any dynamic and potentially unsanitary
or malformed data.

 If you need to create a dynamic custom query where you cannot hardcode every component, you
already know that you need to sanitize and escape it with function esc_sql() before your run it.
This preparation step can be handily done with the prepare() method, which enables the same
kind of format strict validation as insert() or update() .

Formatting SQL Statements ❘ 157

158 ❘ CHAPTER 6 PLUGIN SECURITY

 The process becomes twofold:

 1. Prepare the SQL query with prepare() , which returns a sanitized and escaped statement.

 2. Run the query with this statement, using any of the previously mentioned common methods.

 For instance, how can you fetch the titles of all posts written by an author with a given user ID
during a particular month? The SQL query for such a request is similar to the following:

SELECT `post_title`
 FROM $wpdb- > posts
 WHERE `post_author` = 1
 AND post_status = ‘publish’
 AND post_type = ‘post’
 AND DATE_FORMAT(`post_date`, ‘%Y-%m’) = ‘2010-11’

 From this example, defi ne a generic SQL query with format placeholders:

 < ?php
$sql = “SELECT `post_title`
 FROM $wpdb- > posts
 WHERE `post_author` = %d
 AND post_status = ‘publish’
 AND post_type = ‘post’
 AND DATE_FORMAT(`post_date`, ‘%%Y-%%m’) = %s “;

? >

 Think of it as a template query, where %d will be an integer and %s a string. Notice how percent
signs % are double - escaped as %% and how you don ’ t need quotes around these placeholders.

 Now you can “ prepare ” the query and then process it. Get all posts titles from author ID 1 from the
month of November 2010:

 < ?php

$id = 1;
$month = ‘2010-11’

$safe_sql = $wpdb- > prepare($sql, $id, $month);

$posts = $wpdb- > get_results($safe_sql);
? >

 The prepare() method takes an arbitrary number of parameters: fi rst the SQL template with its
placeholders and then as many values as there are placeholders, either one by one or grouped in an
array. What is important here is to pass these values in the same order as their placeholders in the
query, much like you would use PHP ’ s function printf() .

 If you var_dump() the resulting $posts variable, you get something like the following:

array(3) {
 [0]= >
 object(stdClass)#251 (1) {

 [“post_title”] = > string(30) “Halloween over, Christmas soon”
 }
 [1]= >
 object(stdClass)#250 (1) {
 [“post_title”] = > string(25) “Happy Birthday Mike Muir”
 }
 [2]= >
 object(stdClass)#249 (1) {
 [“post_title”] = > string(27) “Ditched My Mac, Bought a PC”
 }

 Miscellaneous wpdb Methods and Properties

 The $wpdb object contains a few methods and properties you might use, particularly for debugging
purposes.

 Toggling Error Display

 You can turn error echoing on and off:

 < ?php

// On:
$wpdb- > show_errors();

// Off:
$wpdb- > hide_errors();
? >

 You can also echo the error (if any occurred) generated by the most recent query using either the
 print_error() method or the last_error property:

 < ?php
echo $wpdb- > last_error;

$wpdb- > print_error();
? >

 Refer to Chapter 16, which is about debugging, for more tips.

 Tracking the Number of Queries

 The wpdb class variable num_queries keeps record of the number of queries issued. You can also
more simply use function get_num_queries() . Again, you learn more about this in Chapter 16,
which is about debugging and optimizing.

 Other Class Variables

 Table 6 - 2 shows a list of other noteworthy class variables and what they contain:

Formatting SQL Statements ❘ 159

160 ❘ CHAPTER 6 PLUGIN SECURITY

 SECURITY GOOD HABITS

 Security is a subtle cocktail involving design, refl ection, and general common sense. Everything you
have read in this chapter can aid you and provide the right tools, but you also need to develop a few
good habits.

 Always try to break your plugins: Think about illegitimate, evil, and malicious ways to
exploit your code, but also consider just plain stupid use. Some users don ’ t always read the
documentation, just as some plugin authors may be poor at writing clear documentation.
Don ’ t assume users will do what you expect them to do.

 Make security a part of your refl ection from the start of the project: If you do not design
your plugin with security in mind, you are doomed to be sooner or later addressing security
issues or vulnerabilities.

 WordPress developers take security seriously. When vulnerability is reported and confi rmed,
a new version of WordPress with a fi x is made available, generally under a few hours. But
these developers do not maintain older versions: As a result, make sure you code with the
latest, therefore most secure, existing version. Coding plugins using deprecated functions or
API could expose your work to security holes.

 WordPress developers take security seriously because they know WordPress is not perfect:
If you happen to discover a new security hole while playing with WordPress code, make
sure you play your role in WordPress ’ s improvement. Do so in a “ white hat ” (ethical)
approach: Don ’ t make your fi ndings public; instead alert security@wordpress.org.

 Some of the functions described in this chapter are relatively recent: If you started coding
plugins several years ago and did not stay up to par with WordPress code improvements,
now is a good time to get back to your plugins and improve the code.

 Document your code. Your future self will thank you when working back on a plugin coded
several months ago; this can make maintenance much easier, and you can quickly spot secu-
rity weaknesses.

 Be open to your user community and responsive: You are bound to be addressing security
issues one day, and receiving an alarming security report about one product is not something

➤

➤

➤

➤

➤

➤

➤

 TABLE 6 - 2: wpdb Class Variables

 VARIABLE CONTENT

 $wpdb - > insert_id The ID generated for an AUTO_INCREMENT column by the most recent

 INSERT query

 $wpdb - > num_rows The number of rows returned by the last query

 $wpdb - > rows_affected Count of aff ected rows by previous query

a coder should be ashamed of. But pride yourself in fi xing your code quickly, and publicly
disclose that you ’ re releasing a security upgrade: This can encourage users to upgrade.

 Above all, be distrustful and consider all dynamic data to be unclean. ➤

 The golden rule in security, as per Mark Jaquith ’ s words (lead developer of
WordPress and security expert) can be summed up as this: Anything that isn ’ t
hardcoded is suspect.

 Although there is no offi cial WordPress plugin security audit team that can help you improve or
validate your plugin, this does not mean you ’ re on your own. Publicly releasing a plugin and getting
involved in the WordPress community will connect you not only with users but also with seasoned
developers and WordPress contributors. It ’ s a common practice in the WordPress community to
suggest patches to other plugin authors. You will learn more about getting involved in Chapter 17.

 SUMMARY

 One thing you should retain from this chapter is that security is not diffi cult to implement in WordPress
plugins, thanks to convenient functions designed to address the various aspects of security.

 The most important rule to remember is to always check both entrance and exit “ gateways ” : places
where users can send data to your server (URLs, form fi elds, cookies, and so on) and places where
you send data back to the user (data outputs on the browser screen). Any interaction between a user
and a web site is both dangerous by nature and easy to secure.

Summary ❘ 161

Plugin Settings

 WHAT ’ S IN THIS CHAPTER?

 Using a WordPress database to save and get data

 Leveraging the API functions to write compact and future proof

code

 Saving global options, or per - user options

 Saving special option types: expiring options

 Creating a custom database table, when and how to do it

 WordPress enables easy access to the database to store and retrieve data, such as options end
users can modify and save in settings pages or internal information plugins you need to know.
You learn how to save and fetch this data using internal WordPress functions and API.

 THE OPTIONS API

 The Options API is a set of functions that enable easy access to the database where
WordPress, plugins, and themes save and fetch needed information.

 Options are stored in a database table named, by default, wp_options and can be text,
integers, arrays, or objects. For example, WordPress keeps in this table the title of your blog,
the list of active plugins, the news articles displayed on the Dashboard, or the time when to
check if a new version is available.

 You’ll now learn how to use the functions to access, update, and save options: add_option() ,
 update_option() , get_option() , and delete_option() .

➤

➤

➤

➤

➤

 7

164 ❘ CHAPTER 7 PLUGIN SETTINGS

 Saving Options

 You start by saving your fi rst plugin option, which will be named boj_myplugin_color and have a
value of red. The function call to do so is the following:

 < ?php
add_option(‘boj_myplugin_color’, ‘red’);
? >

 The fi rst parameter is your option name. It is crucial that you make it unique and self - explanatory.

 Unique: It shall never confl ict with internal existing or future WordPress options, nor with
settings that might be created by another plugin.

 Self - explanatory: Name it so that it ’ s obvious it ’ s a plugin setting and not something
created by WP.

➤

➤

 Using the same prefi x, for example, boj_myplugin , for function names, options,
and variables is highly recommended for code consistency and preventing confl ict
with other plugins. The golden rule “ Prefi x Everything, ” fi rst introduced in
Chapter 2, applies here.

 The second parameter is the option value that can be practically anything a variable can hold:
string, integer, fl oat number, Boolean, object, or array.

 Updating an option value is a similar function call:

 < ?php
update_option(‘boj_myplugin_color’, ‘blue’);
? >

 The difference between add_option() and update_option() is that the fi rst function does nothing
if the option name already exists, whereas update_option() checks if the option already exists
before updating its value and creates it if needed.

 Saving an Array of Options

 Every option saved adds a new record in WordPress ’ option table. You can simply store several
options at once, in one array: This avoids cluttering the database and updates the values in one
single MySQL query for greater effi ciency and speed.

 < ?php
$options = array(
 ‘color’ = > ‘red’,
 ‘fontsize’ = > ‘120%’,

 ‘border’ = > ‘2px solid red’
);
update_option(‘boj_myplugin_options’, $options);
? >

 Saving your plugin options in one array rather than individual records can have a huge impact on
WordPress ’ loading time, especially if you save or update many options. Most of the time, PHP code
executes fast, but SQL queries usually hinder performance, so save them whenever possible.

 Retrieving Options

 To fetch an option value from the database, use the function get_option() :

 < ?php
$myplugin_color = get_option(‘boj_myplugin_color’);
? >

 The fi rst thing to know about get_option() is that if the option does not exist, it will return
 false . The second thing is that if you store Booleans, you might get integers in return.

 As an illustration of this behavior, consider the following code block that creates a couple of new
options with various variable types:

 < ?php
update_option(‘test_bool_true’, true);
update_option(‘test_bool_false’, false);
? >

 You can now retrieve these options, along with another one that does not exist, and see what
variable types are returned, shown as an inline comment below each get_option() call:

 < ?php
var_dump(get_option(‘nonexistent_option’));
// bool(false)

var_dump(get_option(‘test_bool_true’));
// string(1) “1”

var_dump(get_option(‘test_bool_false’));
// bool(false)
? >

 To avoid an error when checking option values, you should store true and false as 1 and 0 . This
means also that you need to strictly compare the return of get_option() with Boolean false to
check if the option exists:

 < ?php
if(get_option(‘boj_myplugin_someoption’) === false) {
 // option has not been defined yet
 // ...

The Options API ❘ 165

166 ❘ CHAPTER 7 PLUGIN SETTINGS

} else {
 // option exists
 // ...
}
? >

 You can also specify what value you want to be returned if the option is not found in the database,
with a second option parameter to get_option() , like in the following example:

 < ?php
$option = get_option(‘boj_myplugin_option’, ‘option not found’);
? >

 Loading an Array of Options

 You have seen that saving multiple options in a single array is best practice. A complete example of
saving and then getting values from one array would be as follows:

 < ?php
// To store all of them in a single function call:
$myplugin_options = array(
 ‘color’ = > ‘red’,
 ‘fontsize’ = > ‘120%’,
 ‘border’ = > ‘2px solid red’
);
update_option(‘boj_myplugin_options’, $myplugin_options) ;

// Now to fetch individual values from one single call:
$options = get_option(‘boj_myplugin_options’);
$color = $options[‘color’];
$fontsize = $options[‘fontsize’];
$border = $options[‘border’];
? >

 Saving and retrieving options enclosed in an array has another advantage: Variable Boolean types
within the array are preserved. Consider the following example:

 < ?php
add_option(‘test_bool’, array(
 ‘booltrue’ = > true,
 ‘boolfalse’ = > false
)
);
? >

 Now get the option value from the database with var_dump(get_option(‘ test_bool ’)) .
See how Boolean types are retained, contrary to the previous example:

// output result of var_dump(get_option(‘test_bool’))
array(2) {
 [“booltrue”] = > bool(true)
 [“boolfalse”]= > bool(false)
}

 Deleting Options

 Deleting an option needs a self - explanatory function call:

 < ?php
delete_option(‘boj_myplugin_options’);
? >

 This function call returns false if the option to delete cannot be found and returns true otherwise.
You will mostly delete options when writing uninstall functions or fi les (see Chapter 2).

 The Autoload Parameter

 By default, all the options stored in the database are fetched by a single SQL query when WordPress
initializes and then caches. This applies to internal WordPress core settings and options created and
stored by plugins.

 This is effi cient behavior: No matter how many get_option() calls you issue in your plugins, they
won ’ t generate extra SQL queries and slow down the whole site. Still, the potential drawback of this
autoload technique is that rarely used options are always loaded in memory, even when not needed.
For instance, there is no point in fetching backend options when a reader accesses a blog post.

 To address this issue when saving an option for the fi rst time, you can specify its autoload behavior,
as in the following example:

 < ?php
add_option(‘boj_myplugin_option’, $value, ‘’, $autoload);
? >

 Note the empty third parameter: This is a parameter that was deprecated several WordPress
versions ago and is not needed any more. Any value passed to it will do; just be sure not to omit it.

 The fourth parameter is what matters here. If $autoload is anything but ‘ no ’ (or simply not
specifi ed), option boj_myplugin_option will be read when WordPress starts, and subsequent
 get_option() function calls will not issue any supplemental SQL query. Setting $autoload to ‘ no ’
can invert this: This option will not be fetched during startup of WordPress, saving memory and
execution time, but it will trigger an extra SQL query the fi rst time your code fetches its value.

 If you want to specify the autoload parameter, you need to use add_option()
instead of update_option() when creating an option the fi rst time. If you don ’ t
need this parameter, always using update_option() to both create and update
will make your code more simple and consistent.

 Of course, specifying the autoload parameter upon creation of an option does not change the way
you fetch, update, or delete its value.

The Options API ❘ 167

168 ❘ CHAPTER 7 PLUGIN SETTINGS

 Segregating Plugin Options

 A function to initiate your plugin options, run on plugin activation as covered in Chapter 2, could
then look like the following:

 < ?php
function boj_myplugin_create_options() {
 // front-end options: autoloaded
 add_option(‘boj_myplugin_options’, array(
 ‘color’ = > ‘red’,
 ‘fontsize’ = > ‘120%’,
 ‘border’ = > ‘2px solid red’
);

 // back-end options: loaded only if explicitly needed
 add_option(‘boj_myplugin_admin_options’, array(
 ‘version’ = > ‘1.0’,
 ‘donate_url’ = > ‘http://x.y/z/’,
 ‘advanced_options’ = > ‘1’
), ‘’, ‘no’);
}
? >

 Again, don ’ t forget the empty third parameter before the autoload value. This might seem a bit
convoluted, and actually it is for so few options set. This professional technique makes sense if your
plugin features dozens of options, or options containing long text strings.

 As a rule of thumb, if your options are needed by the public part of the blog,
save them with autoload. If they are only needed in the admin area, save them
without autoload.

 Toggling the Autoload Parameter

 The autoload parameter is set when an option is created with add_option() and is not supposed
to change afterward. With this said, if you believe that it would improve your plugin ’ s effi ciency to
modify the autoload behavior, it is possible and easy: simply delete and then re - create the option
with an explicit autoload parameter:

 < ?php
function boj_myplugin_recreate_options() {
 // get old value
 $old = get_option(‘boj_myplugin_admin_options’);

 // delete then recreate without autoload
 delete_option(‘boj_myplugin_admin_options’);
 add_option(‘boj_myplugin_admin_options’, $old, ‘’, ‘no’);
}
? >

 THE SETTINGS API

 Options can be internally created and updated by your plugin (for instance, storing the timestamp
of the next iteration of a procedure). But they are also frequently used to store settings the end user
will modify through your plugin administration page.

 When creating or updating user - defi ned options for a plugin, relying on the Settings API can make
your code both simpler and more effi cient.

 Benefi ts of the Settings API

 Dealing with user inputs introduces new constraints in the option process: You need to design
a user interface, monitor form submissions, handle security checks, and validate user inputs. To
easily manage these common tasks, WordPress wraps the option functions into a comprehensive
Settings API.

 The Settings API enables you to handle the simple tasks:

 Tell WordPress that you are going to use some new options and how you want them
displayed.

 Specify a function that will sanitize user inputs.

 . . . and let WordPress transparently manage for you the cumbersome and repetitive parts:

 Draw most of the option page itself.

 Monitor form submission and handle $_POST data.

 Create and update options if needed.

 Wield all the required security measures and hidden fi elds for nonces, as covered in
Chapter 6.

 Now dissect the Settings API: you learn to use it through a step - by - step example.

 Settings API Functions

 The Settings API functions consist of three steps:

 1. First tell WordPress the new settings you want it to manage for you. Doing so adds your set-
tings into a list of authorized options (also known as whitelisting).

 2. Next defi ne the settings (text areas, input boxes, and any HTML form element) and how
they will be visually grouped together in sections.

 3. Tell WordPress to display your settings in an actual form.

 But fi rst, you create a setting management page for your plugin.

➤

➤

➤

➤

➤

➤

The Settings API ❘ 169

170 ❘ CHAPTER 7 PLUGIN SETTINGS

 Creating the Plugin Administration Page

 The plugin page will be located at /wp - admin/options - general.php?page=boj_myplugin :

 < ?php
// Add the admin options page
add_action(‘admin_menu’, ‘boj_myplugin_add_page’);
function boj_myplugin_add_page() {
 add_options_page(‘My Plugin’, ‘My Plugin’, ‘manage_options’,
 ‘boj_myplugin’, ‘boj_myplugin_options_page’);
}

// Draw the options page
function boj_myplugin_options_page() {
 ? >
 < div class=”wrap” >
 < ?php screen_icon(); ? >
 < h2 > My plugin < /h2 >
 < form action=”options.php” method=”post” >
 < /form > < /div >
 < ?php
}
? >

 This page is empty for now (see Figure 7 - 1). You will add form inputs later.

 FIGURE 7 - 1

 Creating pages for plugins is covered in detail in Chapter 4, “ Integrating in WordPress, ” so refer to
it for more explanation about this code.

 Registering New Settings

 The function you need here is register_setting() and three parameters, used as follows:

 < ?php
register_setting(
 ‘boj_myplugin_options’,
 ‘boj_myplugin_options’,
 ‘boj_myplugin_validate_options’
);
? >

 The fi rst parameter is the setting group name, and the second parameter is the option name as you
would use it in a get_option() call. The group name can be anything actually, but it ’ s just simpler
to name it the same as the option that will get stored in the database.

 The third parameter is an optional function callback: It ’ s a string that references a function, here
named boj_myplugin_validate_options() , that will be passed all the settings saved in your
form. You defi ne this function later.

 Defi ning Sections and Settings

 Now defi ne what the settings will be more precisely by using the function add_settings_field()
and how they will be visually grouped with the function add_settings_section() :

 < ?php
add_settings_section(
 ‘boj_myplugin_main’,
 ‘My Plugin Settings’,
 ‘boj_myplugin_section_text’,
 ‘boj_myplugin’
);

add_settings_field(
 ‘boj_myplugin_text_string’,
 ‘Enter text here’,
 ‘boj_myplugin_setting_input’,
 ‘boj_myplugin’,
 ‘boj_myplugin_main’
);
? >

 The fi rst function call, add_settings_section() , defi nes how the section on the page will show.
The four required parameters it uses follow:

 An HTML ID tag for the section

 The section title text that will show within an < H3 > tag

➤

➤

The Settings API ❘ 171

172 ❘ CHAPTER 7 PLUGIN SETTINGS

 The name of the callback function that will echo some explanations about that section

 The settings page on which to show the section (that is, the ?page=boj_myplugin part of
the page URL)

 The second function call, add_settings_field() , describes how to add the form input. Its fi ve
required parameters follow:

 An HTML ID tag for the section

 The text printed next to the fi eld

 The name of the callback function that will echo the form fi eld

 The settings page on which to show the section

 The section of the settings page in which to show the fi eld, as defi ned previously by the
 add_settings_section() function call

 You now need to defi ne two simple callback functions: One to display a few explanations about the
section and one to output and fi ll the form fi eld.

 < ?php
// Explanations about this section
function boj_myplugin_section_text() {
 echo ‘ < p > Enter your settings here. < /p > ’;
}

// Display and fill the form field
function boj_myplugin_setting_input() {
 // get option ‘text_string’ value from the database
 $options = get_option(‘boj_myplugin_options’);
 $text_string = $options[‘text_string’];
 // echo the field
 echo “ < input id=’text_string’ name=’boj_myplugin_options[text_string]’
 type=’text’ value=’{$options[‘text_string’]}’ / > ”;
}
? >

 This second function call fetches the option value ‘ text_string ’ that is stored in an array.

 When outputting the HTML input fi eld, note its name. This is how you tell the browser to pass
this value back into an array with the same name as the option you ’ ll save, as defi ned earlier in
the register_setting() function call. Any fi eld that has not been previously registered and
whitelisted will be ignored by WordPress.

 Validating User Input

 There is still one callback function to defi ne: boj_myplugin_validate_options() , as mentioned at
the beginning when registering the settings.

➤

➤

➤

➤

➤

➤

➤

 In this example, users are asked to enter text, so your validation function simply makes sure that the
input contains only letters:

 < ?php
function boj_myplugin_validate_options($input) {
 $valid = array();
 $valid[‘text_string’] = preg_replace(
 ‘/[^a-zA-Z]/’,
 ‘’,
 $input[‘text_string’]);
 return $valid;
}? >

 To validate the user input as letters only, a simple pattern matching (also known as regular
expression) that strips all other characters is used here.

 This function is passed the $_POST data as a parameter. For enhanced security, start creating a
new empty array named $valid and collect in this array only the values you are expecting. This
way, if for some reason an unanticipated fi eld is submitted in the form, your function not only
validates the information you want but also blocks everything else. Refer to Chapter 6 for more
tips and functions about data validation.

 Rendering the Form

 Now that you have defi ned these function calls, it ’ s time to use them. At the beginning of this
step - by - step example, you created an empty page: Go back to that and add the form fi elds and a
Submit button:

 < ?php
// Draw the options page
function boj_myplugin_options_page() {
 ? >

 < div class=”wrap” >
 < ?php screen_icon(); ? >
 < h2 > My plugin < /h2 >
 < form action=”options.php” method=”post” >

 < ?php
 settings_fields(‘boj_myplugin_options’);
 do_settings_sections(‘boj_myplugin’);
 ? >

 < input name=”Submit” type=”submit” value=”Save Changes” / >
 < /form > < /div >

 < ?php
}? >

 The settings_fields() function call references the whitelisted option you have declared with
 register_setting() . It takes care of the hidden fi elds, security checks, and form redirection after
it has been submitted.

The Settings API ❘ 173

174 ❘ CHAPTER 7 PLUGIN SETTINGS

 The second function call, do_settings_sections() , outputs all the sections and form fi elds
you have previously defi ned.

 All Done!

 Notice how little HTML you have laid down, and yet the plugin page is now complete and
functional. This is a major reason this Settings API is rock solid: You focus on features
and let WordPress create all the HTML with relevant tags and classes, handle the data
submission, and escape strings before inserting them to the database.

 Designing plugin pages using the Settings API is future-proof: Imagine that you
are creating a plugin for a client on a particular version of WordPress. Later,
when the administration interface of WordPress changes (different layout,
colors, HTML classes), your plugin will still seamlessly integrate because you
did not hardcode any HTML in it.

 Wrapping It Up: A Complete Plugin Management Page

 Some of the function calls used here need to be hooked into WordPress actions such as ‘ admin_
init ’ . Now recapitulate all the steps covered bit by bit into a full - fl edged plugin.

 < ?php
/*
Plugin Name: Settings API example
Plugin URI: http://example.com/
Description: A complete and practical example of use of the Settings API
Author: WROX
Author URI: http://wrox.com
*/

// Add a menu for our option page
add_action(‘admin_menu’, ‘boj_myplugin_add_page’);
function boj_myplugin_add_page() {
 add_options_page(‘My Plugin’, ‘My Plugin’, ‘manage_options’,
 ‘boj_myplugin’, ‘boj_myplugin_option_page’
);
}

// Draw the option page
function boj_myplugin_option_page() {
 ? >
 < div class=”wrap” >
 < ?php screen_icon(); ? >
 < h2 > My plugin < /h2 >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 < form action=”options.php” method=”post” >
 < ?php settings_fields(‘boj_myplugin_options’); ? >
 < ?php do_settings_sections(‘boj_myplugin’); ? >
 < input name=”Submit” type=”submit” value=”Save Changes” / >
 < /form > < /div >
 < ?php
}

// Register and define the settings
add_action(‘admin_init’, ‘boj_myplugin_admin_init’);
function boj_myplugin_admin_init(){
 register_setting(‘boj_myplugin_options’, ‘boj_myplugin_options’,
 ‘boj_myplugin_validate_options’);
 add_settings_section(‘boj_myplugin_main’, ‘My Plugin Settings’,
 ‘boj_myplugin_section_text’, ‘boj_myplugin’);
 add_settings_field(‘boj_myplugin_text_string’, ‘Enter text here’,
 ‘boj_myplugin_setting_input’, ‘boj_myplugin’, ‘boj_myplugin_main’);
}
// Draw the section header
function boj_myplugin_section_text() {
 echo ‘ < p > Enter your settings here. < /p > ’;
}

// Display and fill the form field
function boj_myplugin_setting_input() {
 // get option ‘text_string’ value from the database
 $options = get_option(‘boj_myplugin_options’);
 $text_string = $options[‘text_string’];
 // echo the field
 echo “ < input id=’text_string’ name=’boj_myplugin_options[text_string]’
 type=’text’ value=’$text_string’ / > ”;
}

// Validate user input (we want text only)
function boj_myplugin_validate_options($input) {
 $valid = array();
 $valid[‘text_string’] = preg_replace(
 ‘/[^a-zA-Z]/’,
 ‘’,
 $input[‘text_string’]);
 return $valid;
}? >

 Code snippet plugin1 - standalone - page.php

 Activate this plugin and head to /wp - admin/options - general.php?page=boj_myplugin . You see
a similar interface to the one shown in Figure 7 - 2.

The Settings API ❘ 175

176 ❘ CHAPTER 7 PLUGIN SETTINGS

 Improving Feedback on Validation Errors

 The validation function you ’ ve previously defi ned could be slightly improved by letting the users
know they have entered an unexpected value and that it has been modifi ed so that they can pay
attention to it and maybe amend their input.

 The relatively unknown function add_settings_error() of the Settings API can handle this case.
Here ’ s how it is used:

 < ?php
add_settings_error(
 ‘boj_myplugin_text_string’,
 ‘boj_myplugin_texterror’,
 ‘Incorrect value entered!’,
 ‘error’
);
? >

 This function call registers an error message that displays to the user. The fi rst parameter is the title
of the setting to which this error applies. The second parameter is an HTML ID tag. Then comes
the error message itself, which WordPress encloses in appropriate < div > and < p > tags. The last
parameter is the HTML class and can be either ‘ error ’ or ‘ update ’ .

 You can improve the validating function with a user notice if applicable:

 < ?php
function boj_myplugin_validate_options($input) {
 $valid[‘text_string’] = preg_replace(

 FIGURE 7 - 2

 FIGURE 7 - 3

 ‘/[^a-zA-Z]/’,
 ‘’,
 $input[‘text_string’]);

 if($valid[‘text_string’] != $input[‘text_string’]) {
 add_settings_error(
 ‘boj_myplugin_text_string’,
 ‘boj_myplugin_texterror’,
 ‘Incorrect value entered!’,
 ‘error’
);
 }

 return $valid;
}
? >

 The function now compares the validated
data with the original input and displays an
error message if they differ (see Figure 7 - 3).

 Adding Fields to an

Existing Page

 You have seen how to create a complete
settings page for a plugin and its associated
entry in the administration menus. Doing so makes sense if your plugin features a lot of settings and
its administration page shows a lot of content.

 Sometimes though, it is not worth adding a new menu entry for just one or a few plugin options.
Here again the Settings API will prove to be useful, allowing plugin setting fi elds to easily be added
to the existing WordPress setting pages.

 How It Works

 Two internal functions, do_settings_sections() and do_settings_fields() , are triggered to
draw sections and fi elds that have been previously registered, like you did in the example plugin.

 Each core setting page calls these two functions, so you can hook into them if you know their
slug name.

 Adding a Section to an Existing Page

 Your previous plugin was adding a whole new section and its input fi eld on a standalone page: You
now modify it to insert this content into WordPress ’ Privacy Settings page.

 < ?php
function boj_myplugin_admin_init(){
 register_setting(
 ‘privacy’,
 ‘boj_myplugin_options’,

The Settings API ❘ 177

178 ❘ CHAPTER 7 PLUGIN SETTINGS

 ‘boj_myplugin_validate_options’
);

 add_settings_section(
 ‘boj_myplugin_options’,
 ‘My Plugin Settings’,
 ‘boj_myplugin_section_text’,
 ‘privacy’
);

 add_settings_field(
 ‘boj_myplugin_text_string’,
 ‘Enter text here’,
 ‘boj_myplugin_setting_input’,
 ‘privacy’,
 ‘boj_myplugin_options’
);
}? >

 This function now adds your custom section into the ‘ privacy ’ section, which is located within the
Privacy Settings page, as shown in Figure 7 - 4. Replace all ‘ privacy ’ instances with ‘ media ’ , and
your section will be appended at the end of the Media Settings page.

 You still need to whitelist this setting, with register_setting() . Omitting this step would make
WordPress ignore the setting when submitting the form.

 FIGURE 7 - 4

 FIGURE 7 - 5

 Adding Only Fields

 Of course, it can even make sense to add just one fi eld and no section header to an existing page.
Now modify the function in the previous example:

 < ?php
function boj_myplugin_admin_init(){
 register_setting(
 ‘privacy’,
 ‘boj_myplugin_options’,
 ‘boj_myplugin_validate_options’
);

 add_settings_field(
 ‘boj_myplugin_text_string’,
 ‘Enter text here’,
 ‘boj_myplugin_setting_input’,
 ‘privacy’,
 ‘default’
);
}? >

 Code snippet plugin2 - add - to - page.php

 Your singular fi eld will be added to the
 ‘ default ’ fi eld set of the ‘ privacy ’ section,
as seen in Figure 7 - 5.

 WordPress ’ Sections and Setting

Fields

 To add a section to an existing page or a fi eld
to an existing section, all you need to know is
the slug name of the page. Table 7 - 1 includes
every section and fi eld set names found in
WordPress 3.0 ’ s Settings pages.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 TABLE 7 - 1: List of Core Sections and Fields

 WORDPRESS ’ SETTINGS PAGES SECTION NAMES FIELD SET NAMES

 General Settings

 (options - general.php)

 ‘ general ’ ‘ default ’

 Writing Settings

 (options - writing.php)

 ‘ writing ’ ‘ default ’

 ‘ remote_publishing ’

 ‘ post_via_email ’

continues

The Settings API ❘ 179

180 ❘ CHAPTER 7 PLUGIN SETTINGS

 User Interface Concerns

 Electing to add your plugin settings to a separate page or to a core WordPress page is often a matter
of choosing the right user interface for the right end user.

 When working on a site for a client, you may focus on delivering a key - in - hand CMS solution and
not on explaining what is WordPress and what is a plugin extending its features. Adding your
plugin settings to a core Settings page can enhance its integration into WordPress ’ backend because
it won ’ t appear different from other core settings. From the client ’ s point of view, your plugin is a
core element just as any other built - in feature.

 On the contrary, if you intend to make your plugin available for download, you can target
people who probably understand the concept of adding new features to a core set. These people
will naturally search for a custom menu where they can manage your plugin. If you opt for
adding fi elds to an existing page, be sure to explicitly tell users about it, for instance in the
plugin documentation.

 THE TRANSIENTS API

 You sometimes need to store volatile values in the database. For instance, picture a plugin that
would retrieve the name of the song currently on air from an online radio site. In essence, such data
has a short life span because it usually changes every three or four minutes.

 To be effi cient and avoid polling the online radio too often, your plugin could then fetch the song
title and keep it for at least three minutes before checking for a fresher value.

 WORDPRESS ’ SETTINGS PAGES SECTION NAMES FIELD SET NAMES

 Reading Settings

 (options - reading.php)

 ‘ reading ’ ‘ default ’

 Discussion Settings

 (options - discussion.php)

 ‘ discussion ’ ‘ default ’

 ‘ avatars ’

 Media Settings

 (options - media.php)

 ‘ media ’ ‘ default ’

 ‘ embeds ’

 ‘ uploads ’

 Privacy Settings

 (options - privacy.php)

 ‘ privacy ’ ‘ default ’

 Permalink Settings

 (options - permalink.php)

 ‘ permalink ’ ‘ optional ’

TABLE 7-1 (continued)

 The Transients API offers a simple way to temporarily store cached data in the database. It is similar
to the Options API, with the added attribute of an expiration time after which the option will be
considered expired and deleted.

 The Transients API uses three functions: set_transient() , get_transient() , and delete_
transient() . In the following sections you learn how to use them.

 Saving an Expiring Option

 Imagine that your plugin has determined the current song on the online radio to be “ I Heart
WordPress ” by the famous fi ctional band WROX Hackers. You are going to save this information,
stating that it will be valid for 3 minutes:

 < ?php
set_transient(‘boj_myplugin_song’, ‘I Heart WordPress’, 180);
? >

 As you can see, the analogy with add_option() is obvious: fi rst a transient name and then its value.
The novelty here is a number of seconds as a third parameter, which indicates the duration of the
transient validity.

 Retrieving an Expiring Option

 On every page request, your plugin would now get this transient value:

 < ?php
$song = get_transient(‘boj_myplugin_song’);
? >

 The behavior of function get_transient() is as follows:

 If the transient exists and is still valid, return its value.

 If the transient has expired or has never been set before, return Boolean false .

 Deleting an Expiring Option

 To manually delete a transient, use function delete_transient():

 < ?php
delete_transient(‘boj_myplugin_song’);
? >

 This function returns true if successful, false otherwise, for the instance when the transient
cannot be found in the database.

 Using transients does not clutter the database because expired ones are automatically deleted when
you attempt to get their value. Typically, you will not have to use this function, except during an
uninstall procedure.

➤

➤

The Transients API ❘ 181

182 ❘ CHAPTER 7 PLUGIN SETTINGS

 A Practical Example Using Transients

 Now see what your plugin would look like.

 < ?php

// Fetches from an online radio a song title currently on air
function boj_myplugin_fetch_song_title_from_radio() {
 // ... code to fetch data from the remote website
 return $title;
}

// Get song title from database, using a 3 minute transient, and return it
function boj_myplugin_get_song_title() {
 // Get transient value
 $title = get_transient(‘boj_myplugin_song’);

 // If the transient does not exists or has expired, refresh it
 if(false === $title) {
 $title = boj_myplugin_fetch_song_title_from_radio();
 set_transient(‘boj_myplugin_song’, $title, 180);
 }

 return $title;
}? >

 Code snippet plugin3 - transients.php

 The boj_myplugin_fetch_song_title_from_radio() function would do the following:

 Fetch data from the remote radio website

 Parse this data to extract the current song title

 Return this song title

 Such tasks are beyond the scope of this chapter, but you learn how to do them in Chapter 9, which
deals with HTTP requests.

 Function boj_myplugin_get_song_title() is a complete example of how to use transient
functions: Get a transient, and if it ’ s false then refresh its value and restore it.

 Technical Details

 Due to their volatile nature, transients benefi t from caching plugins, where normal options don ’ t.
For example, on server setups using memcached (a memory caching system) and a memcached
plugin, WordPress stores transient values in fast memory instead of in the database. For this reason,
never assume transients live in the database because they may not be stored there at all.

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 Transient Ideas

 Any time you want to store data with a short time to live, you should probably use the transients.
Following are a few examples of tasks or plugin features that would be a perfect application of the
Transient API:

 A corporate blog where the clients want to display the current value of their share price

 Current number of Facebook friends

 Last tweet from a Twitter account

 Latest article fetched from an RSS feed

 SAVING PER - USER SETTINGS

 The plugins give WordPress users more control over their site with more options. Usually, a
plugin adds a page under the Settings menu where you can modify the options and tweak how
WordPress works.

 There are situations in which such a feature implementation (that is, affecting the way an entire
WordPress setup operate) is not ideal. In a single site with multiple users for instance, you might
want to allow per - user settings instead of global options.

 Crafting a Plugin

 Imagine your newest client being a corporation with both English and Spanish employees. Your job,
while working on its corporate intranet CMS (based on WordPress, of course), is to allow employees
to select the language in which the interface of WordPress ’ backend will display.

 As per your naming conventions, you can name this plugin BOJ ’ s Admin Lang and use boj_
adminlang as a prefi x. While learning how to use functions needed to save and get per - user settings,
you can build this plugin.

 User Metadata

 Data about users are kept in two places in WordPress ’ database:

 Core information primarily used by the login process (name, email address, date of
registration, and password) is stored in table wp_users .

 Meta information, that is, the other data about the user (bio, contact info, Visual Editor
preference and so on) resides in table wp_usermeta .

 The user metadata table has been designed to store anything related to a user and to be easily
extensible. To do so, a set of functions enables easy access to these records: add_user_meta() ,
 update_user_meta(), get_user_meta() , and delete_user_meta() .

 These four functions are similar to the ones from the Options API, with an interesting twist: They
enable duplicate data.

➤

➤

➤

➤

➤

➤

Saving Per-User Settings ❘ 183

184 ❘ CHAPTER 7 PLUGIN SETTINGS

 Saving User Metadata

 The function call to save user metadata has the following syntax:

 < ?php
add_user_meta($user_id, $meta_key, $meta_value, $unique);
? >

 Its parameters follow:

 $user_id — In user tables, users are identifi ed by an integer, their user ID. You ’ ll see later
how to get a user ’ s ID.

 $meta_key and $meta_value — The pair of metadata name and value, like in previous
functions covered such as add_option() .

 $unique — Optional, a Boolean. If true , you cannot add a given user several metadata
with the same name. Its default value is false , meaning that if you don ’ t specify it, you
implicitly allow duplicate meta keys. For code clarity, it ’ s recommended that you don ’ t omit
this parameter.

 The various option types previously covered have to be unique, but several metadata for a given
user can have the same key. This can make sense to store, for instance, multiple book titles a user
would own:

 < ?php
add_user_meta(3, ‘books’, ‘Professional WordPress’, false);
add_user_meta(3, ‘books’, ‘I Love WP’, false);
? >

 Depending on the context, it also can make sense to state that a particular metadata key needs to be
unique. Back to BOJ ’ s Admin Lang: Storing a user ’ s choice for an interface language is an example
of a setting that cannot have multiple values:

 < ?php
add_user_meta(3, ‘boj_adminlang_lang’, ‘es_ES’, true);
? >

 This says that user #3 will want the interface to be translated using locale es_ES (see Chapter 5,
 “ Internationalization, ” for more details on locales).

 Updating User Metadata

 The syntax of function update_user_meta() follows:

 < ?php
update_user_meta($user_id, $meta_key, $meta_value, $prev_value);
? >

 The fi rst three parameters are obvious by now. The fourth parameter, if specifi ed, states which metadata
key should be updated. If omitted, all the user ’ s metadata with this $meta_key will be updated.

➤

➤

➤

 In a previous example, you have saved two book titles for user #3. Now update the second title to
replace WP with WordPress:

 < ?php
update_user_meta(3, ‘books’, ‘I Love WordPress’, ‘I Love WP’);
? >

 Omitting the fourth parameter would have updated all the book titles. Back to your polyglot plugin:
Because this metadata key is unique, you don ’ t need to pass a fourth parameter. Now set user #3 ’ s
interface language to empty:

 < ?php
update_user_meta(3, ‘boj_adminlang_lang’, ‘’);
? >

 Getting User Metadata

 Prior to displaying WordPress ’ backend interface when a user loads it, your bilingual plugin can check
if that particular user has a metadata stating a locale preference. Now see what user #3 prefers:

 < ?php
$lang = get_user_meta(3, ‘boj_adminlang_lang’, true);
? >

 The fi rst and second parameters are the user ID and the metadata key. The third parameter is a bit
less obvious: It ’ s a Boolean stating whether you want the return value to be a single value (true) or
an array (false).

 Your dashboard language plugin stores unique metadata with the name boj_adminlang_lang , so
you want that unique value as a string. To fetch the list of books from the previous example, set this
third parameter to false to get the following array. (The results are shown as a comment below the
function call.)

 < ?php
$book = get_user_meta(3, ‘books’, false);
// array(‘Professional WordPress’, ‘I Love WordPress’);
? >

 Deleting User Metadata

 The last function you will learn to use is delete_user_meta() , which returns true if successful
and false otherwise (for instance, when the metadata key could not be found in the database). Its
syntax follows:

 < ?php
delete_user_meta($user_id, $meta_key, $meta_value)
? >

Saving Per-User Settings ❘ 185

186 ❘ CHAPTER 7 PLUGIN SETTINGS

 You can match records based on key only, or on key and value, to deal with duplicate metadata
keys. When you know the metadata key is unique, you can omit the third parameter:

 < ?php
delete_user_meta(3, ‘boj_adminlang_lang’);
? >

 If the metadata key is not unique, as in the example with the book title, you can specify which
record to delete or simply delete all records with that key:

 < ?php
// Delete one record:
delete_user_meta(3, ‘books’, ‘I Love WordPress’);

// Delete all records:
delete_user_meta(3, ‘books’);
? >

 Getting a User ’ s ID

 You have been reading about user IDs and have been using 3 in previous examples, but how do you
get the current user ID?

 Some actions and fi lters in WordPress pass the current user ID as an argument, as you see when
you build your bilingual plugin from the ground up. If the current user ID is not known, use the
following code:

 < ?php
$user = wp_get_current_user();
$userid = $user- > ID;
? >

 In this code, $user becomes an object containing all known data about the current user: login
name, email, privileges in the admin area, Visual Editor preference, metadata, and so on. One of the
properties of this object is ID , which is the integer you are looking for.

 Adding Input Fields to a Profi le Page

 Because you are going to store per - user settings, it would not make sense to make a global plugin
option page. Instead, you can add an input fi eld to every user ’ s Profi le page. Profi le pages trigger
several actions to which you can hook if you want to add content to the page:

 ‘ personal_options ’ — Add content at the end of the “ Personal Options ” section.

 ‘ profile_personal_options ’ — Append content after the “ Personal Options ” section.

 ‘ show_user_profile ’ — Add content before the “ Update Profi le ” button.

 Now you can add a simple drop - down list from which to choose between English or Espa ñ ol in the
 “ Personal Options ” section:

➤

➤

➤

 < ?php
// Add and fill an extra input field to user’s profile
function boj_adminlang_display_field($user) {
 $userid = $user- > ID;
 $lang = get_user_meta($userid, ‘boj_adminlang_lang’, true);
 ? >

 < tr >
 < th scope=”row” > Language < /th >
 < td >
 < select name=”boj_adminlang_lang” >
 < option value=””
 < ?php selected(‘’, $lang); ? > > English < /option >
 < option value=”es_ES”
 < ?php selected(‘es_ES’, $lang); ? > > Spanish < /option >
 < /select >
 < /td >
 < /tr >

 < ?php
}
// Trigger this function on ‘personal_options’ action
add_action(‘personal_options’, ‘boj_adminlang_display_field’);
? >

 The action ‘ personal_options ’ passes to your custom function boj_adminlang_display_field()
the user object. Your function gets the user ID, the language preference from the user ’ s metadata,
and then outputs the HTML that adds the select input fi eld, as shown in Figure 7 - 6.

 The input fi eld uses WordPress ’ function selected() to automatically select the appropriate option,
as per user choice if previously saved.

 FIGURE 7 - 6

Saving Per-User Settings ❘ 187

188 ❘ CHAPTER 7 PLUGIN SETTINGS

 On profi le pages, you need to monitor form submissions and verify if the user entered any
custom metadata. To do so, you can rely on action ‘ personal_options_update ’ and check the
 $_POST data:

 < ?php
// Monitor form submits and update user’s setting if applicable
function boj_adminlang_update_field($userid) {
 if(isset($_POST[‘boj_adminlang_lang’])) {
 $lang = $_POST[‘boj_adminlang_lang’] == ‘es_ES’ ? ‘es_ES’ : ‘’;
 update_user_meta($userid, ‘boj_adminlang_lang’, $lang);
 }
}
add_action(‘personal_options_update’, ‘boj_adminlang_update_field’);
? >

 The plugin is now fi nished in its visible part: A custom fi eld on every user ’ s Profi le page asks for and
saves a preference setting.

 Notice how you used a ternary operator for shorter code. The following single line:

 < ?php
$lang = $_POST[‘boj_adminlang_lang’] == ‘es_ES’ ? ‘es_ES’ : ‘’;
? >

 is equivalent to the longer structure:

 < ?php
if($_POST[‘boj_adminlang_lang’] == ‘es_ES’) {
 $lang = ‘es_ES’;
} else {
 $lang = ‘’;
}? >

 BOJ ’ s Admin Lang Plugin

 Now you just need to make sure the admin area is actually translated as the user wants. Whenever
WordPress needs to know what language to use, its internal function get_locale() returns the
locale, after applying a fi lter. From WordPress ’ source, fi le wp - includes/l10n.php :

 < ?php
return apply_filters(‘locale’, $locale);
? >

 What you need to do is hook into this fi lter and return the locale as stored in the user ’ s metadata.
The entire plugin, complete with this function and its header, will look like this:

 < ?php
/*
Plugin Name: Per User Setting example
Plugin URI: http://example.com/

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Description: Allow choosing either English or Spanish in the admin area
Author: WROX
Author URI: http://wrox.com
*/

// Return user’s locale
function boj_adminlang_set_user_locale() {
 $user = wp_get_current_user();
 $userid = $user- > ID;
 $locale = get_user_meta($userid, ‘boj_adminlang_lang’, true);
 return $locale;
}
// Trigger this function every time WP checks the locale value
add_filter(‘locale’, ‘boj_adminlang_set_user_locale’);

// Add and fill an extra input field to user’s profile
function boj_adminlang_display_field($user) {
 $userid = $user- > ID;
 $lang = get_user_meta($userid, ‘boj_adminlang_lang’, true);
 ? >

 < tr >
 < th scope=”row” > Language < /th >
 < td >
 < select name=”boj_adminlang_lang” >
 < option value=””
 < ?php selected(‘’, $lang); ? > > English < /option >
 < option value=”es_ES”
 < ?php selected(‘es_ES’, $lang); ? > > Spanish < /option >
 < /select >
 < /td >
 < /tr >

 < ?php
}
add_action(‘personal_options’, ‘boj_adminlang_display_field’);
// Monitor form submits and update user’s setting if applicable
function boj_adminlang_update_field($userid) {
 if(isset($_POST[‘boj_adminlang_lang’])) {
 $lang = $_POST[‘boj_adminlang_lang’] == ‘es_ES’ ? ‘es_ES’ : ‘’;
 update_user_meta($userid, ‘boj_adminlang_lang’, $lang);
 }
}
add_action(‘personal_options_update’, ‘boj_adminlang_update_field’);
? >

 Code snippet plugin4 - per - user - option.php

 Now activate the plugin, pick the Spanish option and . . . ¡ole!, your blog now speaks Spanish, as
shown in Figure 7 - 7.

Saving Per-User Settings ❘ 189

190 ❘ CHAPTER 7 PLUGIN SETTINGS

 Per - User Settings: Best Practices

 If you want a plugin to store per - user settings, make sure it includes the following attributes:

 Visually well integrated into WordPress

 Wisely implemented

 Visual integration — Because you add content to Profi le pages, such content must match the
look and feel of the original WordPress interface. Use proper HTML and classes, as in the plugin
example. More than ever your plugin settings will look like core settings because you won ’ t create
an extra administration page, so make it integrate impeccably.

 Wise implementation — Sometimes it makes more sense to have a standalone plugin option page,
or to add a few options to the WordPress Settings page, with global settings instead of per - user
settings. Most WordPress blogs are single - user blogs, where people may not head to their Profi le to
check for new settings.

➤

➤

 FIGURE 7 - 7

 For this plugin to work, the WordPress installation needs to include the Spanish
translation fi les you can get from http://es.wordpress.org/ . Put the es_ES fi les
in the directory wp - content/languages (which you might need to create fi rst).

 STORING DATA IN CUSTOM TABLES

 So far in this chapter, you have learned how to store and manage standard options, expiring
options, and user metadata. WordPress comes with a number of database tables, and in most cases
anything you want to store can fi t perfectly in these tables. Still, there might be cases in which you
need to create custom tables to save and get data from.

 Types of Data

 Following are two types of records you can store:

 Setup information

 Collected data

 Setup information is typically plugin options: Users confi gure and save some settings the fi rst time
they install a plugin; they might modify these settings in the future, but the number of records won ’ t
grow. This is typically what needs to be stored in the Options table.

 Collected data is information added as the users continue to use their blog. This data might be
related to posts, comments, or any WordPress component. Data expanding over time might be
appropriate candidates for a custom table.

 WordPress ’ Standard Tables

 WordPress installs 11 tables, and specifi cally tables that are more likely to store a lot of custom
data; default names are as follows:

 wp_posts — The site ’ s content

 wp_postmeta — Metadata about posts

 wp_commentmeta — Comments metadata

 wp_usermeta — Metadata for users

 wp_options — Options

 Not only can these tables store practically everything you need to store, but they all also have
convenient API functions to save and get data. Try to make a connection between information you
want to store and a metadata table.

 Sometimes you need to think outside of the box to realize that a particular table will be just fi ne for
your data. Consider for instance the wp_post table with stored custom menus, which at fi rst you
probably wouldn ’ t have considered a particular post type.

 This cannot be emphasized enough: In 99% of the cases, these tables will suffi ce, and most of the
time you will store data in the options table.

 Creating a Custom Table

 Imagine a statistics plugin that can store the IP address and timestamp of every visitor on your blog.
This plugin would need a custom table with three fi elds, as shown in Table 7 - 2.

➤

➤

➤

➤

➤

➤

➤

Storing Data in Custom Tables ❘ 191

192 ❘ CHAPTER 7 PLUGIN SETTINGS

 The SQL statement to create such a table structure follows:

CREATE TABLE `wp_hits` (
 `hit_id` INT(11) NOT NULL AUTO_INCREMENT,
 `chitin` VARCHAR(100) NOT NULL ,
 `hit_date` DATETIME
);

 You now can use a powerful built - in WordPress tool: function dbDelta() . This function is not
loaded by default, so you need to manually include it in your plugin. Now create your custom table:

 < ?php
$tablename = $wpdb- > prefix . “hits”;

$sql = “CREATE TABLE `$tablename` (
 `hit_id` INT(11) NOT NULL AUTO_INCREMENT,
 `hit_ip` VARCHAR(100) NOT NULL ,
 `hit_date` DATETIME
);”;

require_once(ABSPATH . ‘wp-admin/includes/upgrade.php’);

dbDelta($sql);
? >

 What you have just done follows:

 1. Got the database table prefi x and used it to name your custom table.

 2. Defi ned a SQL statement, one fi eld per line.

 3. Included the fi le that defi nes function dbDelta() .

 4. Ran this function.

 TABLE 7 - 2: Data Set Structure and Type

 HIT_ID HIT_IP HIT_DATE

 int(11) NOT NULL AUTO_INCREMENT varchar(100) NOT NULL datetime

 In wp - config.php a WordPress site owner can defi ne a custom database table
prefi x, which is by default wp_ . When you create a custom table, don ’ t hardcode
its full name, and always use the $wpdb - > prefix .

 Checking if a Table Already Exists

 Before creating a table, you might want to check its existence fi rst. To do so, compare the result of
SQL command SHOW TABLE with your actual table name:

 < ?php
$tablename = $wpdb- > prefix . “hits”;

if($wpdb- > get_var(“SHOW TABLES LIKE ‘$tablename’”) != $tablename) {
 // table does not exist!
}
? >

 The function dbDelta() includes a check for the table existence before attempting to create or
update it. Doing this by yourself can make sense, for instance to determine if your plugin needs to
include an otherwise unneeded fi le containing upgrade functions.

 Updating the Structure of a Custom Table

 The power of function dbDelta() resides in its capability to update a table with the same syntax
used to create it: It examines the current table structure if found, compares it to the desired table
structure, and either adds or modifi es the table as required.

 This can make your code much easier to maintain: The install and the upgrade functions actually
share this one function call.

 Back to your statistics plugin: You can now add a fourth fi eld to hold the WordPress post ID that
has been visited. You can also improve the table structure with a primary key on fi rst fi eld hit_id .

 Following is a complete create and upgrade function:

 < ?php
// Create / Update the custom table
function boj_hits_create_table() {
 global $wpdb;

 $tablename = $wpdb- > prefix . “hits”;

 $sql = “CREATE TABLE `$tablename` (
 `hit_id` int(11) NOT NULL AUTO_INCREMENT,
 `hit_ip` varchar(100) NOT NULL,
 `hit_date` datetime,
 `post_id` int(11) NOT NULL,
 PRIMARY KEY (`hit_id`)
);”;

 require_once(ABSPATH . ‘wp-admin/includes/upgrade.php’);

 dbDelta($sql);
}? >

Storing Data in Custom Tables ❘ 193

194 ❘ CHAPTER 7 PLUGIN SETTINGS

 dbDelta() Tips for Success

 Function dbDelta() can be tricky to use. MySQL ’ s tolerance for syntax errors or approximations is
limited, and so is dbDelta() , which is basically a wrapper function. It takes a single space (missing
or extra) to fail the function call and sometimes to fail silently.

 Watching Your SQL Syntax and Style

 dbDelta() is touchy and needs the SQL statement to be formatted with care:

 Put each fi eld on its own line in your SQL statement.

 Use the key word KEY rather than its synonym INDEX.

 Don ’ t use extra spaces between MySQL keywords.

 The simplest way to make sure your SQL statement is cleanly formatted is to design your table in a
tool such as phpMyAdmin (see Chapter 18, “ The Developer Toolbox ”) and then export your table
structure, as shown in Figure 7 - 8. The SQL generated will generally be formatted and indented in a
suitable way for dbDelta() .

➤

➤

➤

 Don ’ t forget to bring in your function the $wpdb object from the global scope.

 FIGURE 7 - 8

 Checking the Return Value in a Debug Sandbox

 dbDelta() does not output any message in case of success or error, but it does return some valuable
information about what it did.

 You cannot make your plugin install function display debug information because that can trigger a
fatal error and prevent your plugin from activating. Instead, it is easy to make a simple sandbox in
which you can test your function and inspect dbDelta() ’ s results with print_r() .

 In the WordPress root directory of your test install, create an empty fi le named testsql.php and
paste the following code:

 < ?php
require(‘./wp-load.php’);
? >
 < pre >
 < ?php
$wpdb- > show_errors();

$tablename = $wpdb- > prefix . “hits”;

$sql = “CREATE TABLE `$tablename` (
 `hit_id` int(11) NOT NULL AUTO_INCREMENT,
 `hit_ip` varchar(100) NOT NULL,
 `hit_date` datetime,
 `post_id` int(11) NOT NULL,
 PRIMARY KEY (`hit_id`)
);”;
require_once(ABSPATH . ‘wp-admin/includes/upgrade.php’);

var_dump(dbDelta($sql));

$wpdb- > print_error();
? >
 < /pre >

 This fi le loads the WordPress environment and then runs your install code. Point your browser to
this fi le (its location would be, for instance, http://example.com/testsql.php) and you can see a
result like the following:

Array
(
 [`wpb_hits`] = > Created table `wpb_hits`
)

 If your SQL statement is incorrect, the resulting array would be empty. Note that you also explicitly
turned error echoing on at the top of the fi le and printed the last SQL error, if any.

Storing Data in Custom Tables ❘ 195

196 ❘ CHAPTER 7 PLUGIN SETTINGS

 Test Running Your SQL Statement

 Function dbDelta() accepts two parameters: a mandatory SQL statement and an optional Boolean
that can prevent the statement from actually executing if set to false :

 < ?php
// Execute statement and print execution result
var_dump(dbDelta($sql));

// Test-run statement without executing it, and print result
var_dump(dbDelta($sql, false));
? >

 You will probably never use this optional parameter in a production situation (on a client ’ s site or
within a released plugin) but this can be an insightful debugging option in a sandbox as just shown.

 Accessing Your Custom Table

 Now that your custom table is created, you can access it using the global $wpdb object. The
following code snippet shows standard SQL queries:

 < ?php

$tablename = $wpdb- > prefix . “hits”;

// Insert a record
$newdata = array(
 ‘hit_ip’ = > ‘127.0.0.1’,
 ‘hit_date’ = > current_time(‘mysql’),
 ‘post_id’ = > ‘123’
);
$wpdb- > insert(
 $tablename,
 $newdata
);

// Update a record
$newdata = array(‘post_id’ = > ‘456’);
$where = array(‘post_id’ = > ‘123’, ‘hit_id’ = > 1);
$wpdb- > update($tablename, $newdata, $where);

? >

 Refer to Chapter 6 to learn how to use the wpdb class in detail.

 SUMMARY

 Saving data is a key part of writing plugins: It enables your plugin to be customized and personally
set by your users, who will appreciate the ability to fi ne - tune new features. Using the functions
described here, you can integrate your plugins seamlessly into WordPress with effi cient, compact,
and future - proof code.

Users

 WHAT ’ S IN THIS CHAPTER?

 Working with users and user functions

 Adding, updating, and retrieving user data

 Developing for roles and capabilities

 Limiting access with user permissions

 Customizing user roles

 Just a couple of years ago, a chapter on users would probably not have been too exciting to
potential plugin developers. At the time, WordPress was largely used as a pure blogging system
with one or a few bloggers writing posts. Developing plugins to integrate with the users
system most likely wouldn ’ t have earned you a lot of popularity within the plugin community.

 Today, WordPress powers many large sites with thousands and even hundreds of thousands
of users. Knowing how WordPress handles users is now an important tool in any plugin
developer ’ s toolbox. You ’ ll deal with various user scenarios in many of your plugins.

 Perhaps, more important, understanding the roles and capabilities system is paramount to
developing a solid and secure plugin. Roles and capabilities defi ne what users can do within
individual sites created with WordPress.

 People use WordPress for private membership sites, social networks, online newspapers,
medical databases, centers for education, and much more. All these might require plugins
to handle users and permissions. When creating plugins for these types of sites, it ’ s often
important to make sure you use the correct WordPress functions so that private information is
not shown to users without permission to see it.

 This chapter gives you the tools to work within the WordPress users, roles, and capabilities
systems and show you how each interact with each other within the WordPress environment.

➤

➤

➤

➤

➤

 8

198 ❘ CHAPTER 8 USERS

 WORKING WITH USERS

 In WordPress, users are people who have registered a unique username for the site. The user has an
account within that installation of WordPress. The term “ user ” shouldn ’ t be confused with “ visitor. ” A
visitor is someone reading the site without an account. This chapter ’ s main focus is on registered users.

 All WordPress installations have at minimum one user. This is the person that installed WordPress
and initially set it up. This account has been traditionally known as the “ admin ” user because
older versions of WordPress automatically created an account with the “ admin ” username. Today,
WordPress allows a different username upon registration.

Some older plugins relied on there being a user account called “ admin, ” which
was wrong in the past and is wrong now. Never assume that a specifi c username
is in use, and never assume that if the username is in use that the user has
particular permissions.

 User Functions

 WordPress has many functions for working with users. In this section, you learn how to use some of
these basic functions.

Many user functions aren ’ t loaded until after plugins are loaded and the current
user isn ’ t authenticated until the init action hook (see Chapter 3, “ Hooks ”).
Using a user function before init in the WordPress fl ow will most likely cause a
fatal error.

 is_user_logged_in()

 The is_user_logged_in() function is a conditional tag that enables you to check if a user is logged
into the site. It returns either true or false based on whether the current user has an ID. It is also
pluggable, so you can create a custom is_user_logged_in() function to overwrite its functionality
completely. People logged in are users, and people who are not logged in are visitors.

 In the following example, you display a message for users based on the return value of this
function in the footer of the site. Logged - in users will get one message and users not logged in
will get a different message.

 < ?php

add_action(‘wp_footer’, ‘boj_footer_user_logged_in’);

function boj_footer_user_logged_in() {

 if (is_user_logged_in())

Working with Users ❘ 199

 echo ‘You are currently logged into this site.’;

 else
 echo ‘You are not logged into the site.’;
}

? >

 This function is important because it enables you to run specifi c code only when needed. Although
it is useful, you ’ ll likely rely more on capabilities for more specifi c checks within your plugins
(see the “ Roles and Capabilities ” section of this chapter).

 get_users()

 The get_users() function enables you to query users from the database based on the arguments
passed into the function through the $args parameter. The $args parameter is an array of
arguments that you can defi ne to limit the users returned by the function.

 < ?php
get_users($args);
? >

 After you query a set of users, you receive an array that you can use to perform some specifi c
functionality based on the results. For example, you could display a list of users based on the date
they registered for the site.

 The $args parameter gives you many options for limiting which users are returned in the
query. The parameter is optional and returns all users if you do not defi ne any arguments.

 blog_id — Get users registered for a specifi c blog within the network. This is only useful
for multisite installs (Chapter 15, “ Multisite ”). It defaults to the current blog ID.

 role — The name of a user role. This defaults to an empty string and uses all roles.

 meta_key — A meta key from the $wpdb - > usermeta table.

 meta_value — A meta value from the $wpdb - > usermeta table.

 meta_compare — A conditional operator to compare the meta_value argument against.
Some values are = , != , > , > = , < , and < = .

 include — An array of user IDs to specifi cally include in the query.

 exclude — An array of user IDs that should be excluded from the query.

 search — A string used to search for users. The search will be on the user_login ,
 user_nicename , user_email , user_url , and display_name fi elds from the $wpdb -
 > users table.

 orderby — The fi eld in which to order the users by. By default, this is login . You can
also order by email , url , registered , name , user_login , and post_count .

 order — Whether to order the users in ascending (ASC) or descending (DESC) order. It
defaults to ASC .

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

200 ❘ CHAPTER 8 USERS

 offset — Number of users to skip over in the query before getting the users from the
database.

 number — An integer that limits the user query to a set number of users. By default, all
users that match the given arguments will be returned.

 It ’ s time to put the get_users() function to some good use. In this section, you build a small
plugin that displays the avatar (photo of the user) of all users based on a given role. This plugin
will be a simple function that enables the plugin user to input the role they want to show the user
avatars for.

 < ?php
/*
Plugin Name: User Avatars
Plugin URI: http://example.com
Description: Displays user avatars based on role.
Author: WROX
Author URI: http://wrox.com
*/

function boj_user_avatars($role = ‘subscriber’) {

 /* Get the users based on role. */
 $users = get_users(
 array(
 ‘role’ = > $role
)
);

 /* Check if any users were returned. */
 if (is_array($users)) {

 /* Loop through each user. */
 foreach ($users as $user) {

 /* Display the user’s avatar. */
 echo get_avatar($user);
 }
 }
}

? >

 Code snippet boj - user - avatars.php

 To use this plugin on a live site, the plugin user needs to use the following code and input a role
name. This example uses the editor as the role.

 < ?php
boj_user_avatars(‘editor’);
? >

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with Users ❘ 201

 get_users_of_blog()

 If you need to get all the users of the blog, you don ’ t have to use the get_users() function from the
previous section. The get_users_of_blog() function returns an array of all user IDs registered for
the current blog being viewed.

 < ?php
get_users_of_blog($id);
? >

 The function takes in a single parameter: $id . This parameter is only useful in multisite setups
where $id would be a specifi c site ID.

 In the next example, you create a function that lists of all the users for the blog. This list displays
the user ’ s name and links to the user ’ s archive page.

 < ?php

function boj_list_users_of_blog() {

 /* Get the users of the current blog. */
 $users = get_users_of_blog();

 /* Check if users are returned. */
 if (!empty($users)) {

 /* Open the users list. */
 echo ‘ < ul class=”users-list” > ’;

 /* Loop through each user returned. */
 foreach ($users as $user) {

 /* Create a list item linking to the user archive page. */
 echo ‘ < li > < a href=”’ . get_author_posts_url($user- > ID) . ‘” > ’;
 echo get_the_author_meta(‘display_name’, $user- > ID);
 echo ‘ < /a > < /li > ’;
 }

 /* Close the users list. */
 echo ‘ < /ul > ’;
 }
}

? >

 You now have a function for creating a nice list of all the users for a blog. You can build this
functionality into a shortcode (see Chapter 10, “ The Shortcode API ”) or a widget (refer to
Chapter 4) by calling the boj_list_users_of_blog() function. You can also have plugin users
input the following code where they want the users list to appear within their theme.

 < ?php boj_list_users_of_blog(); ? >

202 ❘ CHAPTER 8 USERS

 count_users

 The count_users() function enables you to count users of the site. It keeps track of the count of all
users and the number of users for each role. It takes in a single parameter called $strategy , which
determines how the users are counted and can be one of two values.

 time — This value is CPU - intensive and is the default.

 memory — This value is memory - intensive.

 With the next code example, you get the user count for the site. You then list the total number of
users for the site, followed by the user count for each role.

 < ?php

/* Get the user counts. */
$user_count = count_users();

/* Open an unordered list. */
echo ‘ < ul class=”user-counts” > ’;

/* List the total number of users. */
echo ‘ < li > Total users: ‘ . $user_count[‘total_users’] . ‘ < /li > ’;

/* Loop through each of the roles. */
foreach ($user_count[‘avail_roles’] as $role = > $count) {

 /* List the role and its number of users. */
 echo ‘ < li > ’ . $role . ‘: ‘ . $count . ‘ < /li > ’;
}

/* Close the unordered list. */
echo ‘ < /ul > ’;

? >

 Creating, Updating, and Deleting Users

 WordPress has a built - in user interface for creating, updating, and deleting users that most people
will use. However, you may fi nd yourself in a situation where you would need to create a plugin that
handles these things outside of the normal WordPress interface.

 Following are some examples of reasons why you need to code a plugin to handle this:

 A client needs to import thousands of users from a different system into WordPress, and
creating these users individually would be out of the question.

 You ’ re building a social networking plugin that needs a front - end interface for registering
user accounts.

 A plugin that enables administrators to bulk edit/update various forms of user data in a
quick and effi cient manner.

 You need to create a sidebar widget for use in multiple WordPress themes to handle user
registration.

➤

➤

➤

➤

➤

➤

Working with Users ❘ 203

 As you should see by now, there can be many reasons for stepping outside of the standard WordPress
interface for handling users. Although you won ’ t be using the standard interface, you will be using
standard functions that WordPress has conveniently provided for doing these types of things.

 wp_insert_user

 The wp_insert_user() function inserts new users into the database. It also handles the update of
currently registered user accounts if a user ID is passed into the function.

 The function has a single parameter: $userdata . This is an array of arguments for inputting data
into the $wpdb - > users and $wpdb - > usermeta tables for the specifi c user.

 < ?php
wp_insert_user($userdata);
? >

 ID — A current user ’ s ID. You should use this only if you ’ re updating a user. WordPress
automatically creates new user IDs.

 user_pass — A password for the new user account.

 user_login — This is the “ username ” for the user. This is a required argument and returns
an error if not unique.

 user_nicename — An alternative name to use in things such as permalinks to user archives.
This defaults to the user_login argument.

 user_url — A link to the user ’ s personal web site.

 user_email — The email address of the user. This is a required argument and returns an
error if not given or if the email address is already in use.

 display_name — The name to display for the user. This defaults to the user_login
argument.

 nickname — A nickname for the user. This defaults to the user_login argument.

 first_name — The fi rst name of the user.

 last_name — The last name (surname) of the user.

 description — A biographical information argument that describes the user.

 rich_editing — Whether to use the visual editor when writing posts. This is set to true
by default.

 user_registered — The date and time of the user registration. WordPress automatically
sets this to the current date and time if no argument is given.

 role — The role the user should have. This defaults to the default role the site administrator
has set in the WordPress options.

 admin_color — The color scheme for the WordPress administration area.

 comment_shortcuts — Whether the user should use keyboard shortcuts when moderating
comments. This defaults to false .

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

204 ❘ CHAPTER 8 USERS

 Now, you can take these arguments and create a new user with the wp_insert_user() function.
You can mix and match the preceding arguments but make sure you use the required arguments
(user_login , user_pass , and user_email). The user you create next has the “ editor ” role and is
named Wrox. You also make sure the user was created by displaying a WordPress - generated error
message in the instance that something went wrong.

 Create a new plugin fi le named boj - insert - user.php and use the following code to create a plugin
that will insert a new user into your database using the wp_insert_user() function.

 < ?php
/*
Plugin Name: Insert User
Plugin URI: http://example.com
Description: Plugin that inserts a user.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Insert the new user on the ‘init’ hook. */
add_action(‘init’, ‘boj_insert_user’);

/* Inserts a new user. */
function boj_insert_user() {

 /* Do nothing if the ‘wrox’ username exists. */
 if (username_exists(‘wrox’))
 return;

 /* Set up the user data. */
 $userdata = array(
 ‘user_login’ = > ‘wrox’,
 ‘user_email’ = > ‘wrox@example.com’,
 ‘user_pass’ = > ‘123456789’,
 ‘user_url’ = > ‘http://example.com’,
 ‘display_name’ = > ‘Wrox’,
 ‘description’ = > ‘Loves to publish awesome books on WordPress!’,
 ‘role’ = > ‘editor’
);

 /* Create the user. */
 $user = wp_insert_user($userdata);

 /* If the user wasn’t created, display the error message. */
 if (is_wp_error($user))
 echo $result- > get_error_message();
}

? >

Code snippet boj - insert - user.php

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with Users ❘ 205

 wp_create_user

 You may be wondering why there ’ s a function named wp_create_user() when the wp_insert_
user() can get the job done. This function can actually be a useful alternative that enables
you to quickly create new users and not worry about dealing with all the arguments from
 wp_insert_user() .

 < ?php
wp_create_user($username, $password, $email);
? >

 This function enables you to insert the minimum arguments for creating a user, which simplifi es
creating users greatly. It ’ s especially useful if you don ’ t have any other data you want to input.

 $username — A unique login name for the user.

 $password — A password the user will use to log into the site.

 $email — A unique email address for the user account.

 With the next code, you create a new user called wrox2. This user is given the default user role
set by the site administrator. Create a new plugin fi le named boj - create - user.php and use the
following code to create a new user with the wp_create_user() function.

 < ?php
/*
Plugin Name: Create User
Plugin URI: http://example.com
Description: Plugin that creates a user.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Create the new user on the ‘init’ hook. */
add_action(‘init’, ‘boj_create_user’);

/* Creates a new user. */
function boj_create_user() {

 /* Do nothing if the ‘wrox2’ username exists. */
 if (username_exists(‘wrox2’))
 return;

 /* Create the ‘wrox2’ user. */
 wp_create_user(
 ‘wrox2’,
 ‘123456789’,
 ‘wrox2@example.com’
);
}

? >

 Code snippet boj - create - user.php

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

206 ❘ CHAPTER 8 USERS

 wp_update_user

 This is another function that can be done with wp_insert_user() . This function is a wrapper
function for it with one important difference: If the user password (user_pass argument) is
updated, the function automatically resets the cookies for the user ’ s browser.

 < ?php
wp_update_user($userdata);
? >

 This function takes in a single parameter called $userdata , which accepts all the same arguments
covered in the section on wp_insert_user() . However, the ID argument is required for updating
the user. If the ID argument isn ’ t present, a new user will be created.

 In the next example, you use the wp_update_user() function to force the currently logged - in user
to use the “ fresh ” color scheme in the admin. This can be useful for making sure all users have a
consistent experience in the admin. Create a new fi le called boj - force - admin - color.php and use
the following code to update the user.

 < ?php
/*
Plugin Name: Force Admin Color
Plugin URI: http://example.com
Description: Forces the ‘fresh’ admin color scheme.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Only load change the color scheme in the admin. */
add_action(‘admin_init’, ‘boj_force_admin_color’);

/* Forces the current user to use the ‘fresh’ admin color. */
function boj_force_admin_color() {

 /* Get the current user object. */
 $user = wp_get_current_user();

 /* If the $user variable is not empty, continue. */
 if (!empty($user)) {

 /* Get the user’s admin color scheme. */
 $admin_color = get_user_meta($user- > ID, ‘admin_color’, true);

 /* If the admin color is not ‘fresh’, change it. */
 if ($admin_color !== ‘fresh’) {

 /* Set up the user data. */
 $userdata = array(
 ‘ID’ = > $user- > ID,
 ‘admin_color’ = > ‘fresh’
);

 /* Update the user. */

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with Users ❘ 207

 wp_update_user($userdata);
 }
 }
}

? >

 Code snippet boj - force - admin - color.php

 wp_delete_user

 The wp_delete_user() function is a little different than the previous user functions because it
exists only in the WordPress admin. Therefore, you should call the function only while in the
admin. Otherwise, you get a PHP error.

 < ?php
wp_delete_user($user_id, $reassign);
? >

 The function is used for deleting individual users and reassigning their posts and links to an
alternative user. It takes in two parameters.

 $id — The ID of the user to delete.

 $reassign — The ID of the user to set as the author of posts and links in which the user
you ’ re deleting has published. If this parameter is not set, the posts and links will be deleted
from the database.

 In this next example, you delete a user with the ID of 100 and reassign the user ’ s posts and links to
a user with the ID of 1 .

 < ?php

/* Delete user 100 and assign posts to user 1. */
wp_delete_user(100, 1);

? >

 User Data

 User data in WordPress is saved in two different tables in the database: $wpdb - > users and
$wpdb - > usermeta . The users table saves information about the user that WordPress needs to
function. The usermeta table is for storing additional metadata about users. You sometimes need
to load, create, update, and delete this data within your plugins.

 When working with user data from the users table, you work with a few different values set for
every user on the site.

 ID — The ID of the registered user.

 user_login — The login name (username).

 user_pass — The user ’ s password. Note that you should never display this publicly.

➤

➤

➤

➤

➤

208 ❘ CHAPTER 8 USERS

 user_nicename — A “ pretty ” version of the user login that works in URLs.

 user_url — The web site address of the user.

 user_email — The email address of the user. You should never display this publicly
without the user ’ s permission.

 user_registered — The date the user registered for the site.

 display_name — The name the user would like displayed.

 get_userdata

 The get_userdata() function is for getting a user ’ s data from the users table. It also returns
data from the usermeta table, but WordPress has other functions that will be covered for getting
this information. It takes in a single parameter of $user_id , which is the ID of a registered
user for the site. It returns an object of user data if a user were found or false if no user
were found.

 Remember, this function can also return metadata, but you shouldn ’ t worry about using this
function for displaying metadata with it. This is covered later in the chapter.

 Suppose you needed a function to quickly display a specifi c user ’ s name and web site address. Use
the following code to create a function to display this data.

 < ?php
function boj_display_user_website($user_id) {

 /* Get the user data. */
 $data = get_userdata($user_id);

 /* Check if data was returned. */
 if (!empty($data)) {

 /* Check if a URL has been given. */
 if (!empty($data- > user_url)) {

 /* Display the user display name and URL. */
 echo $data- > display_name . ‘: ‘ . $data- > user_url;
 }
}

? >

 Now you can use the boj_display_user_website() function to display any user ’ s name and
site address by inputting the user ID as the $user_id parameter. For example, you could use the
following code to display this information for a user with the ID of 100 .

 < ?php
boj_display_user_website(100);
? >

➤

➤

➤

➤

➤

Working with Users ❘ 209

 wp_get_current_user

 The wp_get_current_user() function gets the user data from the users table for the currently
logged - in user. It can be useful for displaying information when a specifi c user is logged into the site.
The function takes in no parameters and returns an object of the user data.

 In the next example, you display a welcome message based on the user ’ s display name in the
WordPress admin footer.

 < ?php

/* Display user welcome message in the admin footer. */
add_action(‘in_admin_footer’, ‘boj_user_welcome_message’);

function boj_user_welcome_message() {

 /* Get the current user’s data. */
 $data = wp_get_current_user();

 /* Display a message for the user. */
 echo “Hello, {$data- > display_name}. < br / > ”;
}

? >

 get_currentuserinfo

 The get_currentuserinfo() function is similar to the function from the previous section.
 wp_get_current_user() actually calls it to get the user ’ s information. The big difference between
the two functions is that get_currentuserinfo() doesn ’ t return a variable. It sets a global variable
of $current_user instead.

 In most scenarios, the wp_get_current_user() function is preferable. However, both functions
are pluggable (you can create your own versions of the functions), so this needs to be taken into
consideration when building plugins that do overwrite the functions.

 Following is the code you can use to display the current user ’ s registration date. Create a new plugin
fi le named boj - user - registration - date.php and use the code to display the user ’ s registration
date for the site in the admin footer.

 < ?php
/*
Plugin Name: User Registration Date
Plugin URI: http://example.com
Description: Displays user’s registration date in admin footer.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Display user registration date in the admin footer. */

Available for
download on
Wrox.com

Available for
download on
Wrox.com

210 ❘ CHAPTER 8 USERS

add_action(‘in_admin_footer’, ‘boj_display_user_registration_date’);

function boj_display_user_registration_date() {

 /* Globalize the $current_user variable. */
 global $current_user;

 /* Call the current user function. */
 get_currentuserinfo();

 /* Format user registration date. */
 $date = mysql2date(‘F j, Y’, $current_user- > user_registered);

 /* Display the user’s registration date. */
 echo “You registered on {$date}. < br / > ”;
}

? >

 Code snippet boj - user - registration - date.php

 count_user_posts

 If you need to count the number of posts a user has written, use the count_user_posts() function.
This function counts only the number of posts of the “ post ” post type. For example, it doesn ’ t count
the number of pages or entries of custom post types. It takes in a single parameter of $user_id ,
which is the ID of the user you ’ d like to count the posts of.

 Suppose you have a rating system for users depending on the number of posts each user has written.
You want to give a user a “ silver ” rating for writing 25 posts or a “ gold ” rating for writing 50
posts. To do this, you only need to execute the code when a post is saved. Create a new plugin fi le
called boj - user - ratings.php and use the following code to update the logged - in user ’ s rating.
Remember, the user ’ s rating is saved as user meta only when a post is saved. (See the section on user
metadata for details on how to handle metadata.)

 < ?php
/*
Plugin Name: User Ratings
Plugin URI: http://example.com
Description: Updates user rating based on number of posts.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Only update the user rating when a post is saved. */
add_action(‘save_post’, ‘boj_add_user_rating’);

function boj_add_user_rating() {

 /* Get the current user. */

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with Users ❘ 211

 $user = wp_get_current_user();

 /* Get the current user rating. */
 $rating = get_user_meta($user- > ID, ‘user_rating’, true);

 /* If user already has ‘gold’ rating, do nothing. */
 if (‘gold’ == $rating)
 return;

 /* Get the user’s post count. */
 $posts = count_user_posts($user- > ID);

 /* Check if the number of posts is equal to or greater than 50. */
 if (50 < = $posts) {

 /* Give the user a ‘gold’ rating. */
 update_user_meta($user- > ID, ‘user_rating’, ‘gold’);
 }

 /* Check if the number of posts is equal to or greater than 25. */
 elseif (25 < = $posts) {

 /* Give the user a ‘silver’ rating. */
 update_user_meta($user- > ID, ‘user_rating’, ‘silver’);
 }
}

? >

 Code snippet boj - user - ratings.php

 count_many_users_posts

 Sometimes you may want to count the number of posts for multiple users rather than a single
user. Any time you need post counts from multiple users, you should use this function instead
of using the count_user_posts() function multiple times so that you ’ re not querying the database
multiple times.

 The count_many_users_posts() function accepts a single parameter of $users , which should be
an array of user IDs. It returns an array with the user IDs as the array keys and the post counts as
the array values.

 In this next example, you create a function that accepts an array of user IDs and lists the number of
posts each user has written.

 < ?php

function boj_list_users_posts_counts($user_ids = array()) {

 /* Make sure user IDs were given. */
 if (empty($user_ids))

212 ❘ CHAPTER 8 USERS

 return ‘’;

 /* Get the post counts for the users. */
 $users_counts = count_many_users_posts($user_ids);

 /* Open an unordered list. */
 echo ‘ < ul class=”users-posts-counts” > ’;

 /* Loop through each of the user counts. */
 foreach ($users_counts as $user = > $count) {

 /* Display a message with user ID and post count. */
 echo “ < li > The user with an ID of {$user} has {$count} posts. < /li > ”;
 }

 /* Close the unordered list. */
 echo ‘ < /ul > ’;
}

? >

 A plugin user can use this code to display a formatted list of post counts for the users of their choosing.
Suppose the plugin user wanted to list the post counts for users with the IDs of 100, 200, and 300.
They ’ d need to only input those user IDs into the function call as shown in the following code.

 < ?php boj_list_users_posts_counts(array(100, 200, 300)); ? >

 User Metadata

 User metadata is data about the user that is saved in the $wpdb - > usermeta table in the database.
This is additional data that plugins can add about the user outside of the predefi ned WordPress
fi elds in the $wpdb - > users table.

 This type of data can be anything you need to develop user - based settings for your plugin. This data
is saved in key/value pairs; however, a single key may have multiple values. Meta keys are a way
to represent the information provided by the meta values. Think of them as a human - readable
ID that represents the information you ’ re working with. Meta values are the pieces of data you
retrieved based on the given meta key.

 Metadata can literally be any type of data you want to save for the user. Some examples include the
following:

 Twitter or Facebook account

 Location (country, city, state)

 Phone number

 Favorite book

 Personal settings for the site

 Private membership information

➤

➤

➤

➤

➤

➤

Working with Users ❘ 213

 This section focuses on adding, displaying, updating, and deleting specifi c data for a user. This can
enable you to see how the user meta functions work when manipulating data.

 You work with a user ID of 100 and a meta key of favorite_books . This meta key saves the values
of the user ’ s three favorite books.

 add_user_meta

 To add new user metadata, use the add_user_meta() function. This function returns true when
the data is successfully entered into the database and false when it fails.

 < ?php
add_user_meta($user_id, $meta_key, $meta_value, $unique);
? >

 $user_id — The ID of the user to add metadata to.

 $meta_key — The metadata key in the database.

 $meta_value — A single value to add to pair with $meta_key .

 $unique — Whether the function should force a single row (true) in the usermeta table or
create multiple rows for multiple meta values (false). This defaults to false .

 Now, you give three favorite books to a user with the ID of 100. These book titles are WordPress
Dev Champ , WordPress Lazy Coder , and WordPress The Hard Way .

 < ?php

add_user_meta(100, ‘favorite_books’, ‘WordPress Dev Champ’, false);
add_user_meta(100, ‘favorite_books’, ‘WordPress Lazy Coder’, false);
add_user_meta(100, ‘favorite_books’, ‘WordPress The Hard Way’, false);

? >

 The $unique parameter is set to false . This must be false to set multiple values for the same meta
key, favorite_books . You would set this to true if the meta value should be a single value.

 get_user_meta

 Now that you ’ ve learned how to add custom user metadata, you might want to display it. The
 get_user_meta() function pulls the meta from the database based on the user ID and meta key.

 < ?php
get_user_meta($user_id, $meta_key, $single);
? >

➤

➤

➤

➤

Keep in mind that when saving sensitive information about users, you should
make sure this data is not publicly displayed by your plugin.

214 ❘ CHAPTER 8 USERS

 $user_id — The ID of the user to get the metadata for.

 $meta_key — The metadata key to get the metadata value(s) for.

 $single — Whether to return an array of meta values (false) or a single value (true). This
defaults to false .

 To display a list of the user ’ s favorite books that you added with the add_user_meta() function, use
the following code.

 < ?php

/* Get the user’s favorite books. */
$favorite_books = get_user_meta(100, ‘favorite_books’, false);

/* Check if there are any favorite books. */
if (!empty($favorite_books)) {

 /* Open an unordered list. */
 echo ‘ < ul class=”favorite-books” > ’;

 /* Loop through each of the books. */
 foreach ($favorite_books as $book) {

 /* Display the book name. */
 echo ‘ < li > ’ . $book . ‘ < /li > ’;
 }
}

? >

 If the favorite_books meta key had only a single meta value instead of multiple values, you
wouldn ’ t need to loop through an array. You could simply print the return value to the screen.

 < ?php

/* Get the user’s favorite book (single book). */
$favorite_book = get_user_meta(100, ‘favorite_books’, true);

/* Display the favorite book. */
echo $favorite_book;

? >

 update_user_meta

 The update_user_meta() enables you to update a single meta value whether there is a single or
multiple values. You can also completely overwrite all of the meta values if the meta key has multiple
values. This function can also be used to insert new metadata if it doesn ’ t already exist for the user.

 < ?php
update_user_meta($user_id, $meta_key, $meta_value, $prev_value);
? >

➤

➤

➤

Working with Users ❘ 215

 $user_id — The ID of the user you want to get metadata for.

 $meta_key — The metadata key to update meta values for.

 $meta_value — The new value for the meta key.

 $prev_value — The previous meta value to overwrite. If this is not set, all meta values will
be overwritten with the single, new $meta_value parameter.

 Suppose you want to change one of the user ’ s favorite books, WordPress Dev Champ , to a new
book, WordPress Design Champ . You need to set the $meta_value parameter to the new book
name and the $prev_value parameter to the old book name.

 < ?php

update_user_meta(
 100,
 ‘favorite_books’,
 ‘WordPress Design Champ’,
 ‘WordPress Dev Champ’
);

? >

 If you want to overwrite all the favorite books with a single book, you can pass the $meta_value
parameter and leave the $prev_value parameter empty.

 < ?php

update_user_meta(100, ‘favorite_books’, ‘WordPress Design Champ’);

? >

 delete_user_meta

 The delete_user_meta() function enables you to delete all the meta values and meta key or a
single meta value for a given meta key.

 < ?php
delete_user_meta($user_id, $meta_key, $meta_value = ‘’);
? >

 $user_id — The ID of the user to delete metadata for.

 $meta_key — The meta key to delete or the meta key to delete meta value(s) for.

 $meta_value — The specifi c meta value to delete. If this is left empty, all meta values and
the meta key will be deleted for the user.

 If you want to delete a single book from the user ’ s list of favorite books, you need to set the $meta_
value parameter to the name of the book. With the following code, you delete the WordPress
Lazy Coder book from the user ’ s favorite books.

➤

➤

➤

➤

➤

➤

➤

216 ❘ CHAPTER 8 USERS

 < ?php

delete_user_meta(100, ‘favorite_books’, ‘WordPress Lazy Coder’);

? >

 If you want to delete all the user ’ s favorite books, leave the $meta_value parameter empty.

 < ?php

delete_user_meta(100, ‘favorite_books’);

? >

 user_contactmethods

 user_contactmethods is a hook (Chapter 3, “ Hooks ”), not a function like what this chapter has
focused on. It is important because it ’ s a quick method for adding user metadata for alternative
contact methods such as a Twitter username, Facebook profi le, or phone numbers.

 It enables you to create additional fi elds on the user edit screen with a few lines of code. By default,
WordPress adds fi ve methods. The last three are metadata as covered in this section of the chapter:

 Email

 Website

 AIM

 Yahoo IM

 Jabber/Google Talk

 The user_contactmethods fi lter hook returns an array of meta keys and labels for these label keys.
To add new meta keys, you need to add new values to the array, as shown in the next code.

 < ?php
/*
Plugin Name: User Contact Methods
Plugin URI: http://example.com
Description: Additional user contact methods.
Author: WROX
Author URI: http://wrox.com
*/

/* Add a filter to the hook. */
add_filter(‘user_contactmethods’, ‘boj_user_contactmethods’);

/* Function for adding new contact methods. */
function boj_user_contactmethods($user_contactmethods) {

 /* Add the Twitter contact method. */
 $user_contactmethods[‘twitter’] = ‘Twitter Username’;

 /* Add the phone number contact method. */

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Working with Users ❘ 217

 $user_contactmethods[‘phone’] = ‘Phone Number’;

 /* Return the array with the new values added. */
 return $user_contactmethods;
}

? >

 Code snippet boj - user - contact - methods.php

 This adds the extra fi elds to the contact info section of the user profi le screen, as shown
in Figure 8 - 1.

 FIGURE 8 - 1

 WordPress handles all the heavy lifting of adding, updating, and deleting the metadata in the
admin. To retrieve these values, use the get_user_meta() function covered earlier in this section.

 Creating a Plugin with User Metadata

 Now that you ’ ve learned how to manipulate user metadata, it ’ s time to use that knowledge for a
practical test. In many cases, custom user metadata your plugin might use needs to be set by the
user from the user ’ s profi le page.

 What you will do is build a plugin that adds an extra section to the user edit screen in the
WordPress admin. This form will have a select box of the site ’ s blog posts. The users can select one
of these posts as their favorite.

 The fi rst step would be to create a new fi le in your plugin directory with a fi lename boj - user - favorite -
 post.php . You would then need to create the plugin header and add the form to the user edit page.

 < ?php
/*
Plugin Name: User Favorite Post
Plugin URI: http://example.com
Description: Allows users to select their favorite post from the site.
Version: 0.1

Available for
download on
Wrox.com

Available for
download on
Wrox.com

218 ❘ CHAPTER 8 USERS

Author: WROX
Author URI: http://wrox.com
*/

/* Add the post form to the user/profile edit page in the admin. */
add_action(‘show_user_profile’, ‘boj_user_favorite_post_form’);
add_action(‘edit_user_profile’, ‘boj_user_favorite_post_form’);

/* Function for displaying an extra form on the user edit page. */
function boj_user_favorite_post_form($user) {

 /* Get the current user’s favorite post. */
 $favorite_post = get_user_meta($user- > ID, ‘favorite_post’, true);

 /* Get a list of all the posts. */
 $posts = get_posts(array(‘numberposts’ = > -1));
 ? >

 < h3 > Favorites < /h3 >

 < table class=”form-table” >

 < tr >
 < th > < label for=”favorite_post” > Favorite Post < /label > < /th >

 < td >
 < select name=”favorite_post” id=”favorite_post” >
 < option value=”” > < /option >

 < ?php foreach ($posts as $post) { ? >
 < option value=” < ?php echo esc_attr($post- > ID); ? > ”
 < ?php selected($favorite_post, $post- > ID); ? > >
 < ?php echo esc_html($post- > post_title); ? >
 < /option >
 < ?php } ? >

 < /select >
 < br / >
 < span class=”description” > Select your favorite post. < /span >
 < /td >
 < /tr >

 < /table >
 < ?php }

 Code snippet boj - user - favorite - post.php

 This gives you an extra section on the user edit
page, as shown in Figure 8 - 2.

 The form is only displayed at this point. The
next step would be to save the user ’ s favorite
post as metadata.

 FIGURE 8 - 2

Roles and Capabilities ❘ 219

/* Add the update function to the user update hooks. */
add_action(‘personal_options_update’, ‘boj_user_favorite_post_update’);
add_action(‘edit_user_profile_update’, ‘boj_user_favorite_post_update’);

/* Function for updating the user’s favorite post. */
function boj_user_favorite_post_update($user_id) {

 /* Check if the current user has permission to edit the user. */
 if (!current_user_can(‘edit_user’, $user_id))
 return false;

 /* Only accept numbers 0-9 since it’s a post ID. */
 $favorite_post = preg_replace(“/[^0-9]/”, ‘’, $_POST[‘favorite_post’]);

 /* Update the user’s favorite post. */
 update_user_meta($user_id, ‘favorite_post’, $favorite_post);
}

? >

 Code snippet boj - user - favorite - post.php

 The plugin is complete at this point. However, this information is saved only in the database and
shown on the user ’ s profi le screen in the admin. If you want to show the user ’ s favorite post, you
need to use the get_user_meta() function to pull the information from the database.

 With the following code, you get the favorite post selected by a user with the ID of 100 and display
its title. Because the post ID is the saved meta value, you need to use the get_post() function to
retrieve additional information about the post, such as the post title.

 < ?php

/* Get the user’s favorite post (ID). */
$favorite_post = get_user_meta(100, ‘favorite_post’, true);

/* Check if the favorite post is set. */
if (!empty($favorite_post)) {

 /* Get the post object based on the post ID. */
 $post = get_post($favorite_post);

 /* Display the post title. */
 echo $post- > post_title;
}

? >

 ROLES AND CAPABILITIES

 WordPress provides a fl exible user system as you ’ ve seen in the previous half of this chapter.
However, this system represents data about individual users. Alone, it doesn ’ t defi ne what a user can
do within the site. For that, WordPress has a roles and capabilities system, which enables complete
control over what permissions users have.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

220 ❘ CHAPTER 8 USERS

 Roles are what defi ne users in the WordPress system. More precisely, they grant users a set of
permissions called capabilities.

 What Are Roles and Capabilities?

 Roles are what users are grouped by in WordPress. They ’ re a way of giving a label to various sets of
users. One of the most important things to note is that roles are not hierarchical. For example, an
administrator is not necessarily “ higher ” than an editor. Roles are merely defi ned by what the role
can and can ’ t do. It ’ s a permissions system.

 Capabilities are that permissions system. Roles are assigned capabilities that defi ne what that
role can or can ’ t do. These can be set up with the WordPress defaults or be completely custom,
depending on the site. As a plugin developer, you can ’ t make too many assumptions about what
certain roles have permission to do.

 Imagine having to defi ne what individual users could do on a site with thousands of users, each user
having a custom set of permissions. It ’ d be nearly impossible to maintain. Roles enable you to group
users into distinguishable sets, each group with its own permissions.

 Understanding how users, roles, and capabilities work and their relationship to one another is an
important aspect of plugin development.

 Users are registered accounts on a site. Each user ’ s role determines what the user can do on
a site.

 Roles are sets of capabilities assigned to users. Multiple roles may be given to users,
although this is not evident in the WordPress interface.

 Capabilities are the permissions for roles, which are extended to the users of that role.

 In general, most plugins won ’ t need to know what roles users have. Most plugins work directly
with capabilities because they are what defi ne whether a user has permission to perform a task within
the site.

➤

➤

➤

A common mistake many plugin authors make is to check a user ’ s role before
executing code. There is rarely a good reason to do this. Your plugin should
check for a capability because capabilities determine a user ’ s permission to do
something on the site.

 Default Roles

 WordPress ships with fi ve default roles, which work well for most installs. Although roles are not
hierarchical, the default roles do set up what appears to be a hierarchical system.

 Administrator — Has control over everything on the site

 Editor — Has publishing permission and editing access over everyone ’ s posts

➤

➤

Limiting Access ❘ 221

 Author — Has publishing access and can edit its own posts but doesn ’ t have control over
others ’ content

 Contributor — Can submit posts but not publish them

 Subscriber — Enables access to edit its user profi le and the WordPress dashboard

 This list is a general overview of the default roles. Even though these are the defaults, plugin users
can install role management plugins that enable them to change what each role can do.

➤

➤

➤

You should note the context in which the term “ author ” is used because it might
refer to either the default author role or a post author. It ’ s usually not an issue,
but it is one those WordPress quirks you have to learn to live with.

 Custom Roles

 WordPress allows custom roles, which can be created by plugins and themes. There is no user
interface in WordPress for creating custom roles; however, several role management plugins exist
that enable users to create new roles for their site.

 Therefore, as a plugin developer, you can never know exactly what roles exist or might exist for a
site unless you have direct access to the install, such as when doing client work. Keep this in mind
when developing your plugins.

 You may be faced with the task of creating custom roles in your plugins as well. Imagine that you
were creating a plugin that implemented a forum within a WordPress install. Because WordPress
wouldn ’ t know how to manage a forum, you would have to defi ne these custom roles within your
plugin. Some example roles for a forum might include the following:

 Forum Administrator

 Forum Moderator

 Forum Member

 Forum Suspended

 See the “ Customizing Roles ” section later in this chapter for more details on creating custom roles.

 LIMITING ACCESS

 “ Limiting access ” is a way to describe the process of working with WordPress capabilities to see if a
user has permission to access something or perform a specifi c task within a WordPress install.

 By default, most access in WordPress is restricted within the admin. The admin can expose
potentially vital information about a site, so making sure only users with the correct permissions
have access to particular parts of it is important. WordPress can handle this when it needs to.
Security issues arise when your plugin doesn ’ t take into account a user ’ s capabilities.

➤

➤

➤

➤

222 ❘ CHAPTER 8 USERS

 WordPress has two types of capabilities:

 Role capabilities — Added to individual roles, which are extended to the role ’ s users

 Meta capabilities — Based on a specifi c object (user, post, link, and so on)

 A good way to differentiate between the two is to consider this example. User A has the edit_posts
capability (given to his role). This capability enables the user to edit posts. However, this user
shouldn ’ t be able to edit User B ’ s posts based on that capability. That ’ s where meta capabilities come
into play. If User A is trying to edit User B ’ s post, the edit_post meta capability is called, but it ’ s
not the actual capability checked for. The map_meta_cap() function in WordPress decides whether
the user can edit the post by returning an array of role capabilities to check against based on the
user and post.

 When adding settings pages for your plugin, you input a capability. However, WordPress handles
the capability checks for you, so you don ’ t need to worry about limiting access to those pages with
custom code. See Chapter 7, “ Plugin Settings, ” for more information on adding settings pages.

 This chapter reviews only a few of the possible capabilities. For an in - depth list of the
available capabilities, reference the Roles and Capabilities page on the WordPress Codex:
 http://codex.wordpress.org/Roles_and_Capabilities .

 Checking User Permissions

 When you check a user ’ s permissions, you ’ re checking if a user ’ s role has been granted a specifi c
capability or if the user is given a meta capability for a specifi c object. Plugins won ’ t need to
deal with meta capabilities in most cases, but there are instances in which meta capabilities
are needed.

 current_user_can

 The current_user_can() function enables you to check if the currently logged - in user has
permission to perform a given capability. If the user has permission, the function returns true . If
the user is not logged in or doesn ’ t have permission, it returns false .

 < ?php
current_user_can($capability, $args);
? >

 $capability — A single capability to check against a user ’ s role.

 $args — Extra argument that ’ s usually an object ID (like a post ID) when checking if the
user has a meta capability.

 You will most likely use this function when checking for permissions within your plugin. You can
use it to check for default WordPress capabilities or custom capabilities implemented by your plugin.

 Suppose you wanted to check if a user has permission to edit posts before creating a link to the posts
page in the admin on the front end of the site. You would use the current_user_can() function
and the edit_posts capability.

➤

➤

➤

➤

Limiting Access ❘ 223

 < ?php

/* Check if the current user can edit posts. */
if (current_user_can(‘edit_posts’)) {

 /* Link to the edit posts page in the admin. */
 echo ‘ < a href=”’ . admin_url(‘edit.php’) . ‘” > Edit Posts < /a > ’;
}

? >

 If you want to check for a meta capability, you would use the same technique. However, you need
to insert the second parameter of the object ID into the current_user_can() function. For
example, suppose you want to save some post metadata for a post with the ID of 100 but need
to check if the user can edit the post before updating the metadata (see Chapter 11, “ Extending
Posts ”).

 < ?php

/* Check if the current user can edit the specific post. */
if (current_user_can(‘edit_post’, 100) {

 /* Update the post meta. */
 update_post_meta(100, ‘boj_example_meta’, ‘Example’);
}

? >

Your plugin shouldn ’ t check for permissions based on role. Remember, roles
are not hierarchical, so you cannot assume a role has permission to perform a
specifi c task. Always check for permission by capability.

 current_user_can_for_blog

 This function is specifi cally for use with multisite installations. It works almost exactly the same as
 current_user_can() with the added expectation of the blog ID parameter.

 < ?php
current_user_can_for_blog($blog_id, $capability);
? >

 $blog_id — The ID of the blog in the multisite install to check the capability against

 $capability — The capability to check if the user has, for the given blog ID

 You can learn more about working within a multisite environment in Chapter 15, “ Multisite. ”

➤

➤

224 ❘ CHAPTER 8 USERS

 author_can

 The author_can() function works similarly to current_user_can() function. It enables you to
check if a post author (not the author role) can perform a specifi c task based on the capability for a
given post. This function checks for the author of the post. It does not extend to other users.

 < ?php
author_can($post, $capability);
? >

 $post — A post object or the ID of a post

 $capability — The capability to check against the author of the post

 In most scenarios, you would use the current_user_can() function. However, this function has its
place and should be used when you want to specifi cally check if the post author has permission to
perform a specifi c task.

 With this next code, you can check if the author of a post with the ID of 100 has permission to
publish posts and display a message depending on the result.

 < ?php

/* Check if the post author can publish posts. */
if (author_can(100, ‘publish_posts’)) {

 /* Display a message. */
 echo ‘The author of this post has publishing access.’;
}

/* If the author can’t publish posts. */
else {

 /* Display a message. */
 echo ‘The author of this post cannot publish this post.’;
}

? >

 This can be a useful function if you want to build a notifi cation system for editors or administrators
of the site to let them know when a post has been written but not published. That way, users with
the publish_posts capability could come in and press the Publish button.

 user_can

 The user_can() function works similarly to the previous functions. The difference is that you can
check if any user on the WordPress install has a specifi c capability.

 < ?php
user_can($user, $capability);
? >

➤

➤

Limiting Access ❘ 225

 $user_id — A user ID or object to check the capability for

 $capability — A capability to check against the given user

 You use this function when you only need to check for a capability against a specifi c user rather
than the currently logged - in user or the author of a post. It returns true if the user has the
capability and false if not.

 map_meta_cap

 The map_meta_cap fi lter hook is applied to the return value of the map_meta_cap() function, which
is a function that maps role capabilities to the meta capability of a given object. For example, it ’ s
called when current_user_can() is used to check a meta capability. The function returns an array
of role capabilities the user ’ s role must have based on the meta capability and object.

 To simplify that description, imagine that you ’ re checking if a specifi c user can edit a specifi c
post. The map_meta_cap() function determines this for you. However, plugins have the option of
overwriting this using the map_meta_cap fi lter hook.

 < ?php
apply_filters(‘map_meta_cap’, $caps, $cap, $user_id, $args);
? >

 $caps — Array of capabilities the user must have. The user must have each of the
capabilities in the array for the current_user_can() function to return true .

 $cap — The meta capability to check if the user can perform the given check.

 $user_id — The user ’ s ID to check the capabilities against.

 $args — Array of additional arguments passed to the map_meta_cap() function. Generally,
the object ID will be the fi rst argument in the array.

 Imagine you want to create a plugin that restricted other users from editing or deleting an admin ’ s
blog posts. Remember, because roles are not hierarchical, any user with the edit_others_posts
capability can edit the admin ’ s posts, or any user with the delete_others_posts capability can
delete them.

 You ’ re going to create a plugin that limits the editing of admin posts to only users that are
admins by checking for an admin - related capability: delete_users . Therefore, a user with the
 edit_others_posts capability cannot edit admin posts, and a user with the delete_others_posts
cannot delete admin posts.

 You ’ re overwriting the default WordPress functionality to present more of a hierarchical - type role
system by doing this.

 < ?php
/*
Plugin Name: Restrict Admin Post Editing
Plugin URI: http://example.com
Description: Only admins can edit posts made by admins.
Version: 0.1

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

226 ❘ CHAPTER 8 USERS

Author: WROX
Author URI: http://wrox.com
*/

/* Filter the ‘map_meta_cap’ hook. */
add_filter(‘map_meta_cap’, ‘boj_restrict_admin_post_editing’, 10, 4);

/* Function for restricting users from editing admin posts. */
function boj_restrict_admin_post_editing($caps, $cap, $user_id, $args) {

 /* If user is trying to edit or delete a post. */
 if (‘edit_post’ == $cap || ‘delete_post’ == $cap) {

 /* Get the post object. */
 $post = get_post($args[0]);

 /* If an admin is the post author. */
 if (author_can($post, ‘delete_users’)) {

 /* Add a capability that only admins might have to the caps array. */
 $caps[] = ‘delete_users’;
 }
 }

 /* Return the array of capabilities. */
 return $caps;
}

? >

 Code snippet boj - restrict - admin - post - editing.php

 Ideally, if you were creating a plugin that made a hierarchical system like this, you ’ d create custom
capabilities and check for those. Custom capabilities are outlined later in this chapter.

 Is the User an Admin?

 Sometimes, your plugin might need to check if a user is an admin on the site. This can be confusing
as a plugin developer because roles are not hierarchical. Remember, users with the “ administrator ”
role are not always in full control of the site. However, they will be in most cases.

 Generally, you wouldn ’ t check whether a user is an admin. It ’ s nearly always better to check for a
capability based on the specifi c task the user might be performing.

 Determining admin status can be dangerous territory without understanding how roles and
capabilities work because there is no single capability that defi nes a user as an admin. WordPress does
provide a function for checking if a user is an admin, but it should be used only if a specifi c capability
isn ’ t evident.

 is_super_admin

 The is_super_admin() function was added as part of the multisite package of features, but it
works great for single - site installs of WordPress as well. It gives an accurate view of who is an
admin on the site.

Limiting Access ❘ 227

 The function accepts a single parameter of $user_id , which is the ID of the user you want to check
admin status for. It returns true if the user is an admin or false if the user is not an admin.

 is_super_admin() works a bit differently for multisite installs and single - site installs. A super
admin in a multisite setup has full control over the site. You can read more about how super admins
work within a multisite environment in Chapter 15.

 On single - site installations, the is_super_admin() function checks if the current user has the
 delete_users capability because it ’ s a capability that would essentially give the user the most
power on the site. This could just as easily be done with the current_user_can() function. It
almost seems silly to check if someone is an admin by checking if they have the delete_users
capability, especially if the task to be performed has nothing to do with deleting users.

 Suppose your plugin needed to check if a user with the ID of 100 was an admin before performing a
specifi c task. You would use the following code to handle that check.

 < ?php

/* Check if the user is an admin. */
if (is_super_admin(100)) {

 /* Display a message. */
 echo ‘User 100 is an admin. */
}

? >

Keep in mind that being an admin and having the administrator role is not the
same thing in some custom setups.

 Allowing Custom Permissions

 WordPress ships with many default capabilities that extend all the control average users will ever
need. Most plugins will never need custom capabilities. However, some plugins may want to use
custom capabilities to control permissions related to their functionality.

 Suppose you want to create a plugin that allows users to create private sections of content within
their posts with a simple shortcode (see Chapter 10, “ The Shortcode API ”). You would need to
create a custom capability to control who could see that particular content and use the current_
user_can() function to check for that capability.

 < ?php
/*
Plugin Name: Private Content
Plugin URI: http://example.com
Description: Shortcode for hiding private content.
Version: 0.1

Available for
download on
Wrox.com

Available for
download on
Wrox.com

228 ❘ CHAPTER 8 USERS

Author: WROX
Author URI: http://wrox.com
*/

/* Register shortcodes in ‘init’. */
add_action(‘init’, ‘boj_private_content_register_shortcodes’);

/* Function for registering the shortcode. */
function boj_private_content_register_shortcodes() {

 /* Adds the [boj-private] shortcode. */
 add_shortcode(‘boj-private’, ‘boj_private_content_shortcode’);
}

/* Function for handling shortcode output. */
function boj_private_content_shortcode($attr, $content = null) {

 /* If there is no content, return. */
 if (is_null($content))
 return $content;

 /* Check if the current user has the ‘read_private_content’ capability. */
 if (current_user_can(‘read_private_content’)) {

 /* Return the private content. */
 return $content;
 }

 /* Return an empty string as a fallback. */
 return ‘’;
}

? >

 Code snippet boj - private - content.php

 Post authors can then hide content using the [boj - private] shortcode within the post editor. For
example, a post author might hide content as shown here.

[boj-private]
You can only see this content if you have permission to see it.
[/boj-private]

 When creating this plugin, you may have noticed that no user has permission to read the content.
This is because no roles have been assigned the capability of read_private_content . To assign this
capability to a role, a user would need to install a role management plugin, or your plugin would
need to assign the capability upon activation.

 See the later section, “ Adding Capabilities to a Role, ” for information on how to assign capabilities
to roles.

Customizing Roles ❘ 229

 CUSTOMIZING ROLES

 WordPress roles are fl exible, and plugins can bend them in any way that suits their purposes. This
section covers customizing roles, creating new roles, and adding capabilities to new or existing roles.

 You need to know that any changes you make to roles are saved in the database. If your plugin makes
a change, this change won ’ t undo itself when it ’ s deactivated. Your plugin should remove custom
capabilities that it has added and remove any roles it adds if no users are assigned to that role.

 Creating a Role

 WordPress enables the creation of custom roles by plugins. The best time to create a new role for
your plugin is on the activation hook for your plugin (see Chapter 2, “ Plugin Foundation ”). Role
creation needs to be done only once, so this is a good hook to use because it ’ s fi red only when your
plugin is activated.

 add_role

 The add_role() function enables plugin developers to easily add new roles. The function returns a
role object if a new role was successfully added and null if the role already exists.

 < ?php
add_role($role, $display_name, $capabilities);
? >

 $role — The name of the role to add. This should act as a key and contain only
alphanumeric characters or underscores.

 $display_name — The label for the role. This is the name used for the role in public - facing
areas.

 $capabilities — An array of capabilities to assign to the role. Capabilities can also be
added or removed later.

 Now go back to the previous forum example from the “ Custom Roles ” section. The section outlined
four roles that a forum plugin might defi ne.

 Forum Administrator

 Forum Moderator

 Forum Member

 Forum Suspended

 In the next code, you create these roles and give each a basic capability of read , which enables the
user to see only their profi le and the dashboard in the admin.

 < ?php

/* Create the forum administrator role. */

➤

➤

➤

➤

➤

➤

➤

230 ❘ CHAPTER 8 USERS

add_role(‘forum_administrator’, ‘Forum Administrator’, array(‘read’));

/* Create the forum moderator role. */
add_role(‘forum_moderator’, ‘Forum Moderator’, array(‘read’));

/* Create the forum member role. */
add_role(‘forum_member’, ‘Forum Member’, array(‘read’));

/* Create the forum suspended role. */
add_role(‘forum_suspended’, ‘Forum Suspended’, array(‘read’));

? >

 Adding a new role can make it appear in the role selection box on the user profi le page, as shown in
Figure 8 - 3, and on the Users screen in the admin.

 FIGURE 8 - 3

 Deleting a Role

 Deleting a role is as simple as adding a new role by using the correct WordPress function. However,
if your plugin needs to delete a role, it should check that no users on the site have the given role
before deleting it. Otherwise, you might potentially break the plugin user ’ s custom setup.

 The best time to delete a role is on the activation or deactivation hook for your plugin (see Chapter 2,
 “ Plugin Foundation ”). You need to delete a role only once, so these are good hooks to use because
they ’ re fi red only when your plugin is activated or deactivated.

 remove_role

 The remove_role() function can remove a role from the list of saved roles in the database.
It accepts a single parameter of $role , which is the name of the role (not the label or display
name).

 Suppose you wanted to delete the Forum Moderator role you created in the previous section. You
need to set the $role parameter to forum_moderator .

Customizing Roles ❘ 231

 < ?php

/* Remove the forum moderator role. */
remove_role(‘forum_moderator’);

? >

 If you want to check if a user has the role before deleting it, you need to use the get_users()
function outlined earlier. If the function doesn ’ t return any users, delete the role. If it does, simply
skip the role deletion.

 < ?php

add_action(‘admin_init’, ‘boj_remove_forum_moderator’);

function boj_remove_forum_moderator() {

 /* Get at least one user with the forum moderator role. */
 $users = get_users(array(‘role’ = > ‘forum_moderator’, ‘number’ = > 1));

 /* Check if there are no forum moderators. */
 if (empty($users)) {

 /* Remove the forum moderator role. */
 remove_role(‘forum_moderator’);
 }
}

? >

 For the purposes of this example, your code is executing on the admin_init hook, which WordPress
executes on every admin page. In real - world use, it should be executing only once, most likely on a
plugin deactivation hook. This is the hook you will use when creating your plugin in the “ A Custom
Role and Capability Plugin ” section later.

 Adding Capabilities to a Role

 Like creating custom roles, you can create custom capabilities. You can also add WordPress
capabilities to new or existing roles. A capability doesn ’ t technically exist if it ’ s not given to a role.
Your plugin should add capabilities to a role only once. Most likely, it will run this code on the
plugin activation hook (see Chapter 2, “ Plugin Foundation ”).

 get_role

 To add a capability to a role, you must fi rst get the role object, which requires the get_role()
function. This function accepts a single parameter of $role , which is the name of the role. After
you get the role object, you would use the add_cap() method to grant a capability to the role.

 Suppose you want to grant the default WordPress Contributor role the ability to publish posts.
Using this code, you can make the change.

232 ❘ CHAPTER 8 USERS

 < ?php

/* Get the contributor role. */
$role = & get_role(‘contributor’);

/* Check if the role exists. */
if (!empty($role)) {

 /* Add the ‘publish_posts’ capability to the role. */
 $role- > add_cap(‘publish_posts’);
}

? >

 Going back to the idea of a forum plugin and the custom roles you added in the previous section,
you can easily use this method for adding extra capabilities to those roles. Suppose you want to
give two custom capabilities to the forum administrator role called publish_forum_topics and
 delete_forum_topics .

 < ?php

/* Get the forum administrator role. */
$role = & get_role(‘forum_administrator’);

/* Check if the role exists. */
if (!empty($role)) {

 /* Add the ‘publish_forum_topics’ capability to the role. */
 $role- > add_cap(‘publish_forum_topics’);

 /* Add the ‘delete_forum_topics’ capability to the role. */
 $role- > add_cap(‘delete_forum_topics’);
}

? >

 Removing Capabilities from a Role

 WordPress has you covered when it comes to deleting capabilities from a role. Any time you create a
plugin that assigns custom capabilities for use with just your plugin, your plugin needs to clean
up after itself and remove the capabilities it added. Your plugin should remove capabilities from a role
only once instead of on every page load. Most likely, it will run this code on the plugin activation or
deactivation hook (see Chapter 2, “ Plugin Foundation ”).

 Like with adding capabilities, you must fi rst get the role you want to remove capabilities from using
the get_role() function. The difference is that you would use the remove_cap() method for
removing the capability from the role.

 In the previous section, you added the publish_posts capability to the contributor role. In your
plugin ’ s uninstall method or on its deactivation hook (See Chapter 2, “ Plugin Foundation ”), you
would remove this capability.

Customizing Roles ❘ 233

 < ?php

/* Get the contributor role. */
$role = & get_role(‘contributor’);

/* Check if the role exists. */
if (!empty($role)) {

 /* Remove the ‘publish_posts’ capability to the role. */
 $role- > remove_cap(‘publish_posts’);
}

? >

 A Custom Role and Capability Plugin

 Now that you ’ ve learned how to create custom roles and capabilities, it ’ s time to put this knowledge
to the test. In this section, you create a plugin that puts it all together.

 The forum plugin you ’ ve been keeping in mind throughout the roles section of this chapter will be
your starting point. Before starting with code, you need to outline what capabilities each role should
have. Because capabilities handle permissions, you need to defi ne what each capability should do.
Let ’ s outline four fi ctional capabilities a forum plugin might have. (A real forum plugin would likely
have many more.)

 publish_forum_topics — Permission to publish new forum topics

 edit_others_forum_topics — Permission to edit other users ’ forum topics

 delete_forum_topics — Permission to delete forum topics

 read_forum_topics — Permission to read forum topics

 After you outline your capabilities, focus on which roles should have each capability. Use the four
custom roles outlined earlier and the default WordPress administrator role.

 Administrator — Default WordPress administrator role should have all the capabilities for
the forum.

 Forum Administrator — Should have all the capabilities and full control over the forum.

 Forum Moderator — Should have the publish_forum_topics , edit_others_forum_
topics , and read_forum_topics capabilities.

 Forum Member — Should have the publish_forum_topics and read_forum_topics
capabilities.

 Forum Suspended — Because these users are suspended, they should have only the read_
forum_topics capability.

 You create a forum administrator role because the plugin users might want to assign forum
administrators outside of their normal administrator role and not grant full access to the site
to those users.

➤

➤

➤

➤

➤

➤

➤

➤

➤

234 ❘ CHAPTER 8 USERS

 Now that you ’ ve outlined the roles and capabilities needed for your plugin, you can start
building it.

 < ?php
/*
Plugin Name: Forum Roles
Plugin URI: http://example.com
Description: Creates custom roles and capabilities for a fictional forum plugin.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Custom forum roles and capabilities class. */
class BOJ_Forum_Roles {

 /* PHP4 Constructor method. */
 function BOJ_Forum_Roles() {

 /* Register plugin activation hook. */
 register_activation_hook(__FILE__, array(& $this, ‘activation’));

 /* Register plugin deactivation hook. */
 register_deactivation_hook(__FILE__, array(& $this, ‘deactivation’));
 }

 /* Plugin activation method. */
 function activation() {

 /* Get the default administrator role. */
 $role = & get_role(‘administrator’);

 /* Add forum capabilities to the administrator role. */
 if (!empty($role)) {
 $role- > add_cap(‘publish_forum_topics’);
 $role- > add_cap(‘edit_others_forum_topics’);
 $role- > add_cap(‘delete_forum_topics’);
 $role- > add_cap(‘read_forum_topics’);
 }

 /* Create the forum administrator role. */
 add_role(
 ‘forum_administrator’,
 ‘Forum Administrator’,
 array(
 ‘publish_forum_topics’,
 ‘edit_others_forum_topics’,
 ‘delete_forum_topics’,
 ‘read_forum_topics’
)
);

 /* Create the forum moderator role. */

Customizing Roles ❘ 235

 add_role(
 ‘forum_moderator’,
 ‘Forum Moderator’,
 array(
 ‘publish_forum_topics’,
 ‘edit_others_forum_topics’,
 ‘read_forum_topics’
)
);

 /* Create the forum member role. */
 add_role(
 ‘forum_member’,
 ‘Forum Member’,
 array(
 ‘publish_forum_topics’,
 ‘read_forum_topics’
)
);

 /* Create the forum suspended role. */
 add_role(
 ‘forum_suspended’,
 ‘Forum Suspended’,
 array(‘read_forum_topics’)
);
 }

 /* Plugin deactivation method. */
 function deactivation() {

 /* Get the default administrator role. */
 $role = & get_role(‘administrator’);

 /* Remove forum capabilities to the administrator role. */
 if (!empty($role)) {
 $role- > remove_cap(‘publish_forum_topics’);
 $role- > remove_cap(‘edit_others_forum_topics’);
 $role- > remove_cap(‘delete_forum_topics’);
 $role- > remove_cap(‘read_forum_topics’);
 }

 /* Set up an array of roles to delete. */
 $roles_to_delete = array(
 ‘forum_administrator’,
 ‘forum_moderator’,
 ‘forum_member’,
 ‘forum_suspended’
);

 /* Loop through each role, deleting the role if necessary. */
 foreach ($roles_to_delete as $role) {

 /* Get the users of the role. */

236 ❘ CHAPTER 8 USERS

 $users = get_users(array(‘role’ = > $role));

 /* Check if there are no users for the role. */
 if (count($users) < = 0) {

 /* Remove the role from the site. */
 remove_role($role);
 }
 }
 }
}

$forum_roles = new BOJ_Forum_Roles();

? >

 Code snippet boj - forum - roles.php

 This plugin can make the four extra roles you created available on the Users screen in the admin, as
shown in Figure 8 - 4. Your plugin users could add the users they want to these forum - type roles.

 FIGURE 8 - 4

 SUMMARY

 The user, role, and capability systems in WordPress are powerful and fl exible, enabling you to build
any type of plugin to manipulate how these systems work. Each section in this chapter has briefl y
touched on possibilities. The best thing you can do as a plugin developer is set up a test install and
create several fi ctional test users. Then, take what you ’ ve learned throughout this chapter and start
coding.

 If you take away anything from this chapter, you need to remember how the relationship of users,
roles, and capabilities works. Capabilities control permissions. Roles are given capabilities. Users
are assigned roles, and each role ’ s capabilities are extended to its users. Keeping this in mind when
developing your plugins can make the development process much smoother.

HTTP API

 WHAT ’ S IN THIS CHAPTER?

 Learning what an HTTP request is

 Performing HTTP requests with WordPress

 Plugging your blog with third - party APIs

 Reading server responses in various formats

 Creating your own remote API

 In the modern web, dubbed “2.0,” Internet - based services communicate with each other:
web - based readers gather data from blog feeds and Twitter accounts; personal web sites
display Facebook badges or YouTube videos.

 Your site should be no exception to this interoperability: In this chapter you learn how to
make WordPress exchange information with remote services API and open it to a whole new
level of perspective.

 HTTP REQUESTS CRASH COURSE

 This opening section explains what exactly an HTTP request is, what it can be used for,
and why you will once again thank WordPress for lending a convenient hand and doing the
cumbersome parts for you.

 What Is an HTTP Request?

 Hyper Text Transfer Protocol (HTTP) is the networking protocol that is no less than the
foundation of data communication for the World Wide Web.

➤

➤

➤

➤

➤

 9

238 ❘ CHAPTER 9 HTTP API

 HTTP Request Concepts

 Even if you cannot name or explain the following concepts yet, you have already experienced them
in your everyday life online, using a web browser: HTTP is a request/response protocol in the client/
server computing model.

 Client/server — An application (the client) talks to another application (the server) that
itself can respond to many clients at the same time. In the HTTP model, a client is, for
example, a web browser, such as Firefox running on your computer, and the server is a web
server powered, for instance, by Apache, PHP, and MySQL and running WordPress. A
client can also be a web indexing spider robot or a PHP script that fetches and parses
a web page to retrieve information. You do this later in this chapter.

 Request/response protocol — The client submits an HTTP request (basically “ Hello, I ’ m
Firefox, please send me fi le example.html ”) and the server sends back a response (“ Hello,
I ’ m the Apache running PHP; here is the fi le, it is 4kb in size, ” followed by the fi le itself).
Both requests contain potentially interesting information you learn to decipher and use.

 Dissecting an HTTP Transaction

 An HTTP transaction is a simple and clear text communication between the client and the server.

 The Client Sends a Request

 The client request typically consists of a few lines sent in clear text to the server. Using Firefox as a
web browser and trying to load http://example.com/fi le.html from a Google result page would
translate into the following query:

GET /file.html HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0) Firefox/3.6
Referer: http://www.google.com/search?q=example.com
Cookie: lastvisit=235456684

 The fi rst line starts with GET : A GET session is how you tell the server you want to retrieve a document,
here file.html from host example.com . Other main requests methods you can use are HEAD (to just
receive the server response headers) and POST (to submit data to a form).

 Notice also how information such as the referrer URL or the user agent string is also sent by the
client. In Chapter 6, “ Plugin Security, ” you read that these data should not be trusted: Indeed, in an
example later, you learn how to forge these values to anything.

 The Server Sends a Response

 The server response consists of three parts: the headers, with information about the response, a
blank line, and then the response body.

 The headers are a few lines of information and can be something like this:

HTTP/1.1 200 OK
Date: Mon, 23 May 2012 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

➤

➤

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Set-Cookie: lastvisit=235456951
Content-Length: 438
Content-Type: text/html; charset=UTF-8

 The fi rst interesting information is the status code, here 200. Each server response should have a
status code giving details on how the transaction was handled by the server: 200 means OK, 404
means not found. Table 9 - 1 lists the main HTTP status codes you can use.

 TABLE 9-1: Main HTTP Status Codes

 STATUS CODE SIGNIFICATION

 200 OK

 301 Moved Permanently

 302 Moved Temporarily

 403 Forbidden

 404 Not Found

 500 Internal Server Error

 503 Service Unavailable

 Source: http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

 TABLE 9-2: HTTP Status Code Classes

 STATUS CODE SIGNIFICATION

 2xx Request was successful.

 3xx Request was redirected to another resource (like in the case of a URL shortener).

 4xx Request failed because of a client error (for instance, a wrong username/

password combination).

 5xx Request failed because of a server error (like a bad confi guration or a broken

script).

 Of course, you don ’ t have to memorize all these status codes, but with some experience you can
quickly remember the main classes, as detailed in Table 9-2.

 The server response also generally discloses information about the software running on the
server, the content - type of the document it serves, and its length.

HTTP Requests Crash Course ❘ 239

240 ❘ CHAPTER 9 HTTP API

 Possibilities for Crafting HTTP Requests

 The fi rst obvious use of HTTP requests is to retrieve a remote document or particular information
within a remote document: a Twitter user ’ s last message, the current value of share stock, or JSON
encoded data from a remote API service.

 You can also send information to a remote document, such as a form or an HTTP API, and modify
data from a client script.

 These requests would be done using either GET or POST methods, sometimes with credentials
(a login and password or another authentication mechanism) or other parameters. You can make
such requests later in this chapter.

 Another interesting application, using HEAD requests, is to check the state of a remote document
without bothering downloading its content. For instance, a broken link checker plugin could make
sure your bookmarks in WordPress don ’ t return a 404 header.

 How to Make HTTP Requests in PHP

 In basic PHP, without WordPress that is, there are several common ways to send HTTP requests. It
is interesting to know the basics because you sometimes need to code a portion of code in a
non - WordPress environment.

 The following examples all do the same thing: send a GET request to http://wordpress.org/ and
display the content received (that is, their index page).

 Using the HTTP Extension

 You can use the HTTP extension to send a GET request to http://wordpress.org/ and display the
content received.

 < ?php

$r= new HttpRequest(‘http://wordpress.org/’, HttpRequest::METH_GET);
$r- > send () ;
echo $r- > getResponseBody();
? >

 Using fopen() Streams

 You can use fopen() streams to send a GET request to http://wordpress.org/ and display the
content received.

 < ?php

if($stream = fopen(‘http://wordpress.org/’, ‘r’)) {
 echo stream_get_contents($stream);
 fclose($stream);
}
? >

 Using a Standard fopen()

 You can use a standard fopen() to send a GET request to http://wordpress.org/ and display the
content received.

 < ?php

$handle = fopen(“http://wordpress.org/”, “rb”);
$contents = ‘’;
while(!feof($handle)) {
 $contents .= fread($handle, 8192);
}
fclose($handle);
echo $contents;
? >

 Using fsockopen()

 You can use fsockopen() to send a GET request to http://wordpress.org/ and display the content
received.

 < ?php

$fp = fsockopen(“wordpress.org”, 80, $errno, $errstr, 30);
if (!$fp) {
 echo “$errstr ($errno) < br / > \n”;
} else {
 $out = “GET / HTTP/1.1\r\n”;
 $out .= “Host: wordpress.org\r\n”;
 $out .= “Connection: Close\r\n\r\n”;
 fwrite($fp, $out);
 while (!feof($fp)) {
 echo fgets($fp, 128);
 }
 fclose($fp);
}
? >

 Using the CURL Extension

 You can use the CURL extension to send a GET request to http://wordpress.org/ and display the
content received.

 < ?php

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, “http://wordpress.org/”);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_exec($ch);
curl_close($ch);
? >

 Code snippet http_request_tests.php

Available for
download on
Wrox.com

Available for
download on
Wrox.com

HTTP Requests Crash Course ❘ 241

242 ❘ CHAPTER 9 HTTP API

 Too Many Ways?

 Each way has drawbacks and advantages over others: Some are simple and quicker to write, and
some allow more parameters for fi ner control, support different request methods, or are faster to
execute. Notice for instance how burdensome it is to use fsockopen(), which needs the complete
request headers, compared to using streams or the HTTP extension.

 The problem is this: Depending on the server setup and confi guration, PHP version, or security
settings, some methods won ’ t be allowed or even available. When working for a specifi c client, you
could adapt to its specifi c server architecture and use a method you know will work, but this is
simply impossible when authoring a plugin you intend to release for broad use.

 What you have to do, simply put, boils down to this alternative: Either test each method prior to
using one, or rely on WordPress ’ HTTP API.

 WORDPRESS ’ HTTP FUNCTIONS

 WordPress implements a smart and powerful class, named WP_Http and found in wp - includes/
class - http.php , which can test each previously described method and automatically select the best
one available on the current machine.

 The HTTP API supports all the methods you need to use (GET , POST and HEAD) and enables fi ne -
 tuning several parameters such as proxy tunneling.

 Don ’ t use PHP native methods to perform HTTP requests: Remember, they may
be not installed or have restrictive confi gurations on many web hosts. Always
use the WordPress HTTP API and its functions described next.

 The wp_remote_ Functions

 You can execute an HTTP request within WordPress mostly using three functions:
 wp_remote_get(), wp_remote_post(), and wp_remote_head() , obviously for GET , POST,
and HEAD requests.

 These functions all operate the same way:

 The HTTP request is performed using the eponymous method.

 They accept two parameters, one required and one optional.

 They return an array or an object.

➤

➤

➤

 The syntax of these three functions follows:

 < ?php

$get_result = wp_remote_get($url, $args);
$post_result = wp_remote_post($url, $args);
$head_result = wp_remote_head($url, $args);

? >

 These three functions can actually be considered as simple shortcuts to the more generic
 wp_remote_request() . Indeed, the three preceding lines are equivalent to the three following ones:

 < ?php

$get_result = wp_remote_request($url, array(‘method’ = > ‘GET’));
$post_result = wp_remote_request($url, array(‘method’ = > ‘POST’));
$head_result = wp_remote_request($url, array(‘method’ = > ‘HEAD’));

? >

 The function wp_remote_request() works the same way as the other wp_remote_* functions, so
everything that follows applies to any wp_remote_ function.

 You now learn what parameters they need, what data they return, and then play with them.

 wp_remote_* Input Parameters

 The fi rst parameter $url these functions need is a string representing a valid site URL to which the
HTTP request will be sent. Supported protocols are HTTP and HTTPS; some transports might
work with other protocols such as FTP but don ’ t assume this.

 The second parameter $args is an optional array of parameters to override the defaults. The default
parameters are the following array:

 < ?php

$defaults = array (
 ‘method’ = > ‘GET’,
 ‘timeout’ = > 5,
 ‘redirection’ = > 5,
 ‘httpversion’ = > ‘1.0’,
 ‘user-agent’ = > ‘WordPress/3.1; http://example.com/’,
 ‘blocking’ = > true,
 ‘headers’ = > array (),
 ‘cookies’ = > array (),
 ‘body’ = > NULL,
 ‘compress’ = > false,
 ‘decompress’ = > true,
 ‘sslverify’ = > true,
)

? >

WordPress’ HTTP Functions ❘ 243

244 ❘ CHAPTER 9 HTTP API

 This array contains the default values when omitted. For instance, instead of identifying your blog
in the user - agent string and if you want to disguise your HTTP request as one made by a generic
browser, you would write the following:

 < ?php

$args = array(
 ‘user-agent’ = > ‘Mozilla/5.0 (Windows NT 5.1; en-US) Firefox/3.6.8’,
);

$result = wp_remote_get($url, $args);

? >

 In Chapter 6, you learned that despite its trustful name, the PHP generated array $_SERVER should
not be trusted. As you can see, it takes a single PHP line to forge and fake the content of, for
example, $_SERVER[‘ HTTP_USER_AGENT ’] .

 Table 9-3 contains a comprehensive description of the most important default values. You can
consider the others either partially implemented, not always functional depending on the transport
used, or simply of minor interest.

 TABLE 9-3: Default Settings of wp_remote_ Functions Optional Parameters

 PARAMETER SIGNIFICATION

 ‘ method ’ Either ‘ GET ’ , ‘ POST ’ , or ‘ HEAD ’ . Some transports (the HTTP or the CURL

extension for instance) may accept other rarely used methods such as ‘ PUT ’

or ‘ TRACE ’ , but should not be assumed.

 ‘ timeout ’ A number of seconds: how long the connection should stay open before

failing when no response.

 ‘ user - agent ’ The user - agent used to identify “ who ” is performing the request. Defaults to

 “ WordPress/ ” followed by the version of WordPress running and the URL of

the blog issuing the request.

 ‘ headers ’ An array of additional headers.

 ‘ cookies ’ An array of cookie values passed to the server.

 ‘ body ’ The body of the request, either a string or an array, which is data submitted to

the URL.

 wp_remote_* Return Values

 All wp_remote_* functions return an array if the request has completed, or an error object if it was
unsuccessful.

 Unsuccessful Requests

 In case of a malformed HTTP request, or if the request cannot be performed for any other reason
(site not responding, temporary connection problem, etc.), the result will be an object instance of
WordPress ’ class WP_Error , containing an error code and an error message, as illustrated in the
following code snippet:

 < ?php

var_dump(wp_remote_get(‘malformed-url’));

? >

 The result of this ill - fated GET request follows:

object(WP_Error)#259 (2) {
 [“errors”]= >
 array(1) {
 [“http_request_failed”]= >
 array(1) {
 [0]= >
 string(29) “A valid URL was not provided.”
 }
 }
 [“error_data”]= >
 array(0) {
 }
}

 Error objects returned by HTTP requests will contain the error code “ http_request_failed ” and
a meaningful detailed diagnosis. Consider the following attempts:

 < ?php

$bad_urls = array(
 ‘malformed’,
 ‘http://0.0.0.0/’,
 ‘irc://example.com/’,
 ‘http://inexistant’,
);

foreach($bad_urls as $bad_url) {
 $response = wp_remote_head($bad_url, array(‘timeout’= > 1));
 if(is_wp_error($response)) {
 $error = $response- > get_error_message();
 echo “ < p > $bad_url returned: < br/ > $error < /p > ”;
 }
}

? >

 Code snippet wp_remote_errors.php

Available for
download on
Wrox.com

Available for
download on
Wrox.com

WordPress’ HTTP Functions ❘ 245

246 ❘ CHAPTER 9 HTTP API

 Notice a couple of things in this snippet:

 To speed up things because it ’ s obvious these requests will fail, and you don ’ t want to wait
for 5 seconds each, an additional timeout parameter is set, to 1 second.

 Because HTTP requests return a WP_Error object on failure, you can test the response
using function is_wp_error() . You learn more about dealing with errors and the
 WP_Error class in Chapter 16, “ Debugging and Optimizing. ”

 Finally, look at the actual result of this code snippet:

Trying malformed returned:
A valid URL was not provided.

Trying http://0.0.0.0/ returned:
couldn’t connect to host

Trying irc://example.com/ returned:
Unsupported protocol: irc

Trying http://inexistant returned:
Could not resolve host: inexistant; No data record of requested type

 As you can see, the HTTP request functions can diagnose most scenarios, so you know you can rely
on them if you need to troubleshoot unexpected behavior within your code.

 Successful Requests

 When the HTTP request has completed, wp_remote_ functions return a multidimensional array of
four elements, containing the raw server response in four parts: ‘ headers ’ , ‘ body ’ , ‘ response ’ ,
and ‘ cookies’ .

 Consider the following request:

 < ?php

var_dump(wp_remote_get(‘http://example.com/asdfgh’));

? >

 The output of this request will be akin to the following:

array(4) {

 [“headers”] = > array(5) {
 [“date”] = > string(29) “Wed, 01 Sep 2010 14:39:21 GMT”
 [“server”] = > string(85) “Apache/2.2.8 mod_ssl/2.2.8 PHP/5.2.5”
 [“content-length”] = > string(3) “461”
 [“connection”] = > string(5) “close”
 [“content-type”] = > string(25) “text/html; charset=utf-8”
 }

 [“body”]= > string(461) “ < html > < head >
 < title > 404 Not Found < /title >

➤

➤

 < /head > < body >
(... snip ...)
 < /body > < /html >
“

 [“response”] = > array(2) {
 [“code”] = > int(404)
 [“message”] = > string(9) “Not Found”
 }

 [“cookies”] = > array(0) {}
}

 The fi rst thing you should note here is that despite sending an HTTP request to a nonexistent
page, the request is still considered successful: Whenever the web server replies to the client request,
no matter its reply, the HTTP transaction is complete.

 The four elements of the response array consist of the following:

 ‘ headers ’ — The raw list of the server response as detailed in the fi rst section of this
 chapter, minus the HTTP response code.

 ‘ body ’ — The body of the server response, which is typically the page HTML content itself
but can be JSON or XML encoded data when polling a remote API for instance.

 ‘ response ’ — The server response code and its signifi cation, as detailed in Table 9 - 1 and
Table 9 - 2. This particular information is especially valuable: Despite the HTTP transaction
being successful, its result may be totally different from what you expect. You should
always check that you obtain 200 as a response code.

 ‘ cookies ’ — If the server wants the client to store cookie information, they will be
included here. In case you need this info for any subsequent HTTP request, include them as
additional optional parameter in the next wp_remote_ function call.

 wp_remote_ Companion Functions

 The array returned by wp_remote_ functions enclose exhaustive information, and as such may
contain too much data if you need just a part of it.

 Along with functions performing HTTP requests, you can use “ companion ” functions that enable
quick access to a part of the returned array. These functions follow:

 wp_remote_retrieve_response_code() — Returns just the response code (for example,
200) of an HTTP response

 wp_remote_retrieve_response_message() — Returns just the response message (for
example, “ OK ”)

 wp_remote_retrieve_body() — Returns the body of the response

 wp_remote_retrieve_headers() — Returns all the headers of a server response

 wp_remote_retrieve_header() — Returns just one particular header from a server
response

➤

➤

➤

➤

➤

➤

➤

➤

➤

WordPress’ HTTP Functions ❘ 247

248 ❘ CHAPTER 9 HTTP API

 For example, to check if a link exists and does not return a 404 Not Found error, you can use the
following code:

 < ?php

$url = ‘http://www.example.com/bleh’;

// Send GET request
$response = wp_remote_get($url);

// Check for server response
if(is_wp_error($response)) {

 $code = $response- > get_error_message();
 wp_die(‘Requests could not execute. Error was: ‘ . $code);

}

// Check that the server sent a “404 Not Found” HTTP status code
if(wp_remote_retrieve_response_code($response) == 404) {

 wp_die(‘Link not found’);

}

// So far, so good
echo ‘Link found’;

? >

 Code snippet wp_remote_check_404.php

 You can use these simple companion functions more in the next examples and plugins.

 Advanced Confi guration and Tips

 Thanks to these wp_remote_ functions, you are now able to perform most tasks involving HTTP
requests in a standard WordPress environment. But not all environments are customary, and not all
tasks are basic. Fortunately, the HTTP API is extensible and versatile.

 For instance, it is frequent that networks in corporate environments are isolated behind a fi rewall or
a proxy. You will now read how to bypass this, and maybe treat HTTP responses differently.

 In the following sections, you will also learn how to fi ne - tune the behavior of the HTTP API,
utilizing its hooks and fi lters, for example to log requests for troubleshooting.

 Proxy Support

 In computer networks, a proxy server is a server that acts as an intermediary between the client and
the requested server.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 A great aspect of the HTTP API, and another reason why it is superior to PHP native functions
as detailed in the fi rst section, is that it supports connections through proxy without additional
complex confi guration.

 To enable proxy support, you simply need to have the user defi ne the following constants:

 < ?php

define(‘WP_PROXY_HOST’, ‘firewall.corp.example.com’);
define(‘WP_PROXY_PORT’, ‘3128’);
define(‘WP_PROXY_USERNAME’, ‘mylogin’);
define(‘WP_PROXY_PASSWORD’, ‘mypassword’);

? >

 This is especially important for users in a corporate environment where proxies are common and
can block all WordPress ’ outgoing requests if not, or incorrectly, confi gured.

 On a corporate network, where a fi rewall architecture can characteristically handle different
connections toward the Internet and those staying on the intranet, another constant can be used to
specify domains that should not go through the proxy, in a comma - separated list:

 < ?php

// these hosts will not go through the proxy
define(‘WP_PROXY_BYPASS_HOSTS’, ‘sales.example.com, hr.example.com’);
? >

 The blog domain and localhost are automatically added to this list, so you don ’ t have to
include them.

 Also, when working with clients on a fi rewalled corporate intranet, a concern of your client ’ s IT
department may be to limit outgoing connections to a restricted white list of web sites. If so, use
constants WP_HTTP_BLOCK_EXTERNAL and WP_ACCESSIBLE_HOSTS like so:

 < ?php

// block all requests through the HTTP API
define(‘WP_HTTP_BLOCK_EXTERNAL’, true);

// except for these hosts
define(‘WP_ACCESSIBLE_HOSTS’,
 ‘api.wordpress.org, sales.example.com, partner.web’);
? >

 Including api.wordpress.org in the list of accessible hosts can ensure that the built - in upgrading
for core, plugins, and themes still work.

 Filtering Requests and Responses

 As any other piece of WordPress code poetry, the HTTP API makes considerable use of hooks, and
reading the source fi le of the WP_Http class you can fi nd several fi lters and actions triggered.

WordPress’ HTTP Functions ❘ 249

250 ❘ CHAPTER 9 HTTP API

 Example: Modify a Default Parameter

 For instance, if you want all your plugins to show off your WordPress skills in server logs whenever
they perform queries, add the following fi lter and function:

 < ?php

// Hook into the filter that sets user agent for HTTP requests
add_filter(‘http_headers_useragent’, ‘boj_myplugin_user_agent’);

// Set your own user agent
function boj_myplugin_user_agent() {
 global $wp_version;

 return “WordPress version $wp_version ; “.
 “Need a WordPress specialist? Contact us! “.
 “BOJ Studio www.example.com”;
}

? >

 This fi lter can set the new default value for the user agent string, which means that on a per - request
basis you can still override it, as in the previous example where you disguised as a generic Internet
browser.

 Example: Log HTTP Requests and Responses

 Hooks that can come handy when debugging requests and server responses are the ‘ http_request_
args ’ and ‘ http_response ’ fi lters, used to allow modifi cation of the request’s parameters right
before it is executed or just before the server responses are returned.

 In the WP_Http class source (located in wp - includes/class - http.php), you can see that each
request applied these two fi lters:

 < ?php

// before the request is sent, you will find:
$r = apply_filters(‘http_request_args’, $r, $url);

// once the response is processed, you will read:
return apply_filters(‘http_response’, $response, $r, $url);

? >

 You are now going to code a plugin that logs each HTTP request and its parameters, and each
server response into a fl at text fi le. You can use boj_loghttp as a prefi x throughout this plugin.

 < ?php
/*
Plugin Name: Log HTTP requests
Plugin URI: http://example.com/
Description: Log each HTTP requests into a flat text file for further analysis

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Author: WROX
Author URI: http://wrox.com
*/

// Hook into filters
add_filter(‘http_request_args’, ‘boj_loghttp_log_request’, 10, 2);
add_filter(‘http_response’, ‘boj_loghttp_log_response’, 10, 3);

// Log requests.
// Parameters passed: request parameters and URL
function boj_loghttp_log_request($r, $url) {

 // Get request parameters formatted for display
 $params = print_r($r, true);

 // Get date with format 2010-11-25 @ 13:37:00
 $date = date(‘Y-m-d @ H:i:s’);

 // Message to log:
 $log = < < < LOG
 $date: request sent to $url
 Parameters: $params

LOG;

 // Log message into flat file
 error_log($log, 3, dirname(__FILE__).’/http.log’);

 // Don’t forget to return the requests arguments!
 return $r;
}

// Log responses
// Parameters passed: server response, requests parameters and URL
function boj_loghttp_log_response($response, $r, $url) {

 // Get server response formatted for display
 $resp = print_r($response, true);

 // Get date with format 2010-11-25 @ 13:37:00
 $date = date(‘Y-m-d @ H:i:s’);

 // Message to log:
 $log = < < < LOG
 $date: response received from $url
 Response: $resp

LOG;

 // Log message into flat file
 error_log($log, 3, dirname(__FILE__).’/http.log’);

WordPress’ HTTP Functions ❘ 251

252 ❘ CHAPTER 9 HTTP API

 // Don’t forget to return the response!
 return $response;

}

? >

 Code snippet plugin_boj_loghttp.php

 The two logging functions are similar: They receive from the fi lters a number of parameters that are
then printed into a fl at text fi le using PHP function error_log() ; then they eventually return the
unmodifi ed fi ltered value.

 Notice the particular syntax used here to delimit strings, called the heredoc syntax. The opening
string delimiter is an identifi er after < < < , and the closing delimiter is the identifi er, not indented.

 After you activate this plugin, it starts appending entries to the fi le http.log in the plugin ’ s directory.
This is an interesting plugin that demonstrates the inner working of WordPress ’ core, because it
will, for instance, log all transactions with api.wordpress.org when checking the latest version of
plugins, themes, and core, or when fetching the feeds displayed in your dashboard.

 Remember that logging events is for debugging only and is not suitable for
production environments, as it could leak sensitive information or even fi ll up
disk space with log data.

 Example: Advanced Filtering

 Filters and actions in the WP_Http class enable specifi c customization of how WordPress handles
HTTP requests.

 Imagine working for a client who wants a plugin that can monitor the content of an FTP directory.
As a seasoned plugin author, you know that the HTTP API supports only the HTTP and HTTPS
protocols, but as an experienced PHP hacker you also remember that the CURL extension can
perform FTP requests.

 You could obviously code something using CURL directly instead of the HTTP API functions, but
that would not be best practice because you would lose access to the hooks of this API.

 When you are confi dent the client server will have CURL support, you can code a specifi c plugin to
leverage CURL ’ s capability to work with the FTP protocol.

 You can now write the part of such a plugin to do the following:

 Disable all transports except CURL.

 Add custom parameters to the CURL session.

 Fetch and display the content of an FTP directory (for example, ftp://ftp.gnu.org , a
public repository).

➤

➤

➤

 < ?php

// Disable all transports but curl
function boj_onlycurl_force_curl() {
 add_fi lter(‘use_fsockopen_transport’, ‘__return_false’);
 add_fi lter(‘use_fopen_transport’, ‘__return_false’);
 add_fi lter(‘use_streams_transport’, ‘__return_false’);
 add_fi lter(‘use_http_extension_transport’, ‘__return_false’);
}

// Add a custom parameter to the CURL requests:
// display only fi le names of FTP directories (no attributes, size etc...)
function boj_onlycurl_hack_curl_handle($handle) {
 curl_setopt($handle, CURLOPT_FTPLISTONLY, true);
 return $handle;
}

// Hook CURL requests to the above function
add_action(‘http_api_curl’, ‘boj_onlycurl_hack_curl_handle’);

// Now do the job
boj_onlycurl_force_curl();

var_dump(wp_remote_get(‘ftp://ftp.gnu.org’));

? >

 Code snippet plugin_boj_onlycurl.php

 By using the HTTP API, even if reducing it to use the CURL extension, your code still interacts easily
with WordPress, for instance with your previously defi ned fi lter that modifi es the user agent string.

 Notice a convenient function you used here: __return_false() . A few shortcut functions in
WordPress can be used to return always the same value: __return_true() , __return_false() ,
 __return_zero() and __return_empty_array() .

 These shortcut functions are designed to be used in a fi lter context for simpler code. The three
following examples are equivalent:

 < ?php

// 1. The old way
// You need to create an extra function that may be used only once
add_filter(‘somefilter’, ‘boj_always_return_false’);
function boj_always_return_false() {
 return false;
}

// 2. The convoluted short way
add_filter(‘somefilter’, create_function(‘$a’, ‘return false;’));

Available for
download on
Wrox.com

Available for
download on
Wrox.com

WordPress’ HTTP Functions ❘ 253

254 ❘ CHAPTER 9 HTTP API

// 3. The elegant and simple way
add_filter(‘somefilter’, ‘__return_false’);

? >

 Using anonymous (or lambda) functions in PHP with create_function() has several drawbacks
for which it is wise to avoid:

 The argument list and body are strings, so you have to pay extra attention to escaping and
quotes.

 Your favorite editor or IDE cannot highlight properly the code within the string body,
 making it more diffi cult to code more complex operations.

 Opcode caches such as APC or PHP Accelerator cannot cache these dynamic functions.

 Some Caveats on Checking HTTP Responses

 When you want to programmatically check the existence and validity of a link with an HTTP
request, you can break your analysis down into two steps: If the request is successful and the
response code is 404, you know the link does not exist. Otherwise, you may have to check things
more carefully, depending on the context:

 If the request is an is_wp_error() , it can be because the URL to check is malformed but
also because there is a temporary glitch preventing your web server from accessing the URL
(connection problem, DNS timeout, and so on).

 If the response code is in the 5xx family (a server error, remember Table 9-2) this is probably
a temporary server error, so you need to check again later.

 Some web servers are confi gured to handle “ Not Found ” errors differently than expected.
For instance, http://example.com/icons will return a 404 when you would have expected
the server to redirect to http://example.com/icons/ , which actually exists.

 Some proxies or DNS servers, especially in corporate environments, are confi gured to
handle all requests successfully, even though they should have returned an error: The
following result is the actual return of wp_remote_head(‘ http://example.xom ’)
(notice the typo in the top - level domain) behind such a proxy, treating a nonexistent domain
as a regular 404 error. (See Figure 9 - 1 for the human readable result in a browser when
trying to access this URL.)

array(4) {
 [“headers”]= >
 array(6) {
 [“cache-control”]= >
 string(8) “no-cache”
 [“pragma”]= >
 string(8) “no-cache”
 [“content-type”]= >
 string(24) “text/html; charset=utf-8”
 [“proxy-connection”]= >
 string(10) “Keep-Alive”

➤

➤

➤

➤

➤

➤

➤

 [“connection”]= >
 string(10) “Keep-Alive”
 [“content-length”]= >
 string(3) “762”
 }
 [“body”]= >
 string(0) “”
 [“response”]= >
 array(2) {
 [“code”]= >
 int(404)
 [“message”]= >
 string(9) “Not Found”
 }
 [“cookies”]= >
 array(0) {
 }
}

 FIGURE 9 - 1

 PRACTICE: READING JSON FROM A REMOTE API

 Now that you know mostly everything about the HTTP API, it ’ s time to put your knowledge
into practice.

 Twitter is an interesting practical playground because its API is developer - friendly, has extensive
documentation (see http://dev.twitter.com/doc/), and can output results in various formats such
as JSON, XML, or RSS.

 When working with remote APIs, always check the current documentation for
recent changes. More often than not, third - party services introduce new methods
and deprecate some, possibly breaking previously functional code.

 In this section you create a plugin that can fetch the number of followers of a given Twitter username
and the latest status update. You also learn how to get and parse JSON data, a format you often
deal with when playing with remote APIs.

Practice: Reading JSON from a Remote API ❘ 255

256 ❘ CHAPTER 9 HTTP API

 Getting and Reading JSON

 The API URL you will poll is http://api.twitter.com/1/users/show.json?screen_
name=$username , with a simple GET request. This returns data presented in JSON format, which
looks like this, when formatted and indented for human eyes:

{
 “followers_count” : 1731,
 “friends_count” : 108,
 “name” : “Ozh RICHARD”,
 “description” : “WordPress & PHP hacker.”,
 “screen_name” : “ozh”,
 “status” : {
 “created_at” : “Sun Sep 05 09:01:56 +0000 2010”,
 “id” : 23045381793,
 “retweet_count” : 1337,
 “text” : “I’m writing a book about WordPress plugins!”,
 },
 “statuses_count” : 1730,
 “time_zone” : “Paris”,
 “url” : “http://ozh.org/”,
}

 JSON (JavaScript Object Notation) is a popular data text format with a “ name “ : “ value “
pair structure, which resembles a PHP multidimensional array. A reason for its popularity is
that it is easy to programmatically parse and generate it, using functions json_encode() and
 json_decode() .

 For your information, functions json_encode() and json_decode() are built in
PHP as of version 5.2 and newer. Fortunately, WordPress versions with looser
requirements include emulations of these functions for older platforms, to be
found in wp - includes/compat.php.

 After you have your JSON data collected into string $json , the function json_decode() converts it
to an object or an array, as follows:

 < ?php

// Convert JSON string to an object
$json_object = json_decode($json);
$followers = $json_object- > followers_count;
$last_tweet = $json_object- > status- > text;

// Convert JSON string to an array: pass bool true as second parameter
$json_array = json_decode($json, true);

$followers = $json_array[‘followers_count’];
$last_tweet = $json_array[‘status’][‘text’];

? >

 Your Functional Plugin

 Your complete plugin, named “ Twitter Info ” and using boj_ti_ as a prefi x, follows:

 < ?php
/*
Plugin Name: Twitter Info
Plugin URI: http://example.com/
Description: Get number of followers and last tweet of a Twitter user
Author: WROX
Author URI: http://wrox.com
*/

// Define the Twitter username. Edit this.
define(‘BOJ_TI_USERNAME’, ‘ozh’);

// Name of the transient key to cache values
define(‘BOJ_TI_KEY’, ‘boj_ti_key’);

// Poll Twitter API
// Return array of (follower count, last tweet), or false on error
function boj_ti_ask_twitter() {

 // Send GET request to Twitter API
 $api_url = ‘http://api.twitter.com/1/users/show.json?screen_name=’;
 $api_response = wp_remote_get($api_url . urlencode(BOJ_TI_USERNAME));

 // Get the JSON object
 $json = wp_remote_retrieve_body($api_response);

 // Make sure the request was successful or return false
 if(empty($json))
 return false;

 // Decode the JSON object
 // Return an array with follower count and last tweet
 $json = json_decode($json);

 return array(
 ‘followers’ = > $json- > followers_count,
 ‘last_tweet’ = > $json- > status- > text
);
}

// Return array of followers and last tweet, either from cache or fresh
function boj_ti_get_infos($info = ‘followers’) {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Practice: Reading JSON from a Remote API ❘ 257

258 ❘ CHAPTER 9 HTTP API

 // first, look for a cached result
 if (false !== $cache = get_transient(BOJ_TI_KEY))
 return $cache[$info];

 // no cache? Then get fresh value
 $fresh = boj_ti_ask_twitter();

 // Default cache life span is 1 hour (3600 seconds)
 $cache = 3600;

 // If Twitter query unsuccessful, store dummy values for 5 minutes
 if($fresh === false) {
 $fresh = array(
 ‘followers’ = > 0,
 ‘last_tweet’ = > ‘’,
);
 $cache = 60*5;
 }

 // Store transient
 set_transient(BOJ_TI_KEY, $fresh, 60*5);

 // Return fresh asked info
 return $fresh[$info];
}

// Echo number of followers
function boj_ti_followers() {
 $num = boj_ti_get_infos(‘followers’);
 echo “ < p > I have $num followers on Twitter! < /p > ”;
}

// Echo last tweet
function boj_ti_last_tweet() {
 $tweet = boj_ti_get_infos(‘last_tweet’);
 echo “ < p > My last tweet: $tweet < /p > ”;
}

// Register custom actions
add_action(‘boj_ti_followers’ , ‘boj_ti_followers’);
add_action(‘boj_ti_last_tweet’, ‘boj_ti_last_tweet’);

? >

 Code snippet plugin_boj_twitter_info.php

 In this plugin, the function boj_ti_ask_twitter() sends a GET request against Twitter ’ s API,
makes sure the result is JSON, decodes it, and returns an array of follower count and last tweet.

 The function boj_ti_get_infos() makes good use of the Transient API as covered in Chapter 7,
 “ Plugin Settings, ” to avoid hammering Twitter for constantly fresh results. Notice how it also
caches dummy results for a shorter time when the API returns an error: It is good practice to cover
all possible results when dealing with third - party providers you have no control over.

 Because the main function boj_ti_get_infos() returns an array with the follower count and last
tweet, for more convenience you ’ ve added two simple shortcut functions to easily access one data
set, boj_ti_followers() and boj_ti_last_tweet() .

 To use your plugin, you would traditionally use the following snippet:

 < ?php

if(function_exists(‘boj_ti_followers’))
 boj_ti_followers()

? >

 This way, if for some reason your plugin is deactivated, you won ’ t break your blog by calling an
undefi ned function.

 But have a closer look at the end of the plugin: You have defi ned two custom actions. This good
practice now enables you to simply use this one - liner:

 < ?php
do_action(‘boj_ti_followers’);
? >

 Using this method is simpler for end users (less code to add) and safer. (If the plugin is deactivated,
the action simply does not exist and nothing is triggered.)

 PRACTICE: SENDING DATA TO A REMOTE API

 You can now practice with POST requests.

 Code a simple plugin that can automatically back up your blog posts to Tumblr, a popular free
blogging platform located at http://www.tumblr.com/ and with a simple API, documented at
 http://www.tumblr.com/docs/api .

 Formatting Parameters for POST Requests

 First, you need to create an account there and write down the email used for login and your
password.

 Sending POST requests is like submitting a form in a web browser; the information you would write
into form fi elds are instead collected in an array that is sent as the body of the request.

 When you publish a new post, your plugin can get its title and content into $post_title and
 $post_content . You can now send a POST request to the Tumblr write API:

 < ?php

// URL of the Tumblr API
$api = ‘http://www.tumblr.com/api/write’;

// Data for the POST request
$data = array(

Practice: Sending Data to a Remote API ❘ 259

260 ❘ CHAPTER 9 HTTP API

 ‘email’ = > ‘email@example.com’,
 ‘password’ = > ‘123456’,
 ‘type’ = > ‘regular’,
 ‘title’ = > $post_title,
 ‘body’ = > $post_body
);

// Do the POST
$response = wp_remote_post($api,
 array(
 ‘body’ = > $data,
 ‘timeout’ = > 20
)
);
? >

 The data of the POST request is passed as the body item of the request parameter array, along with
any other parameter as, for instance here, a longer timeout.

 Your Functional Plugin

 Your complete plugin, named Simple Tumblr Backup and using boj_stb as a prefi x, follows:

 < ?php
/*
Plugin Name: Simple Tumblr Backup
Plugin URI: http://example.com/
Description: Backup posts to a Tumblr account as you publish them
Author: WROX
Version: 1.00
Author URI: http://wrox.com/
*/

// Edit this:
define(‘BOJ_STB_TUMBLR_EMAIL’, ‘email@example.com’);
define(‘BOJ_STB_TUMBLR_PASSW’, ‘132456’);

// Actions when new post is published
add_action(‘draft_to_publish’, ‘boj_stb_newpost’);
add_action(‘pending_to_publish’, ‘boj_stb_newpost’);
add_action(‘future_to_publish’, ‘boj_stb_newpost’);

// Function called when new post. Expecting post object.
function boj_stb_newpost($post) {

 // Get post information
 $post_title = $post- > post_title;
 $post_content = $post- > post_content;

 // URL of the Tumblr API
 $api = ‘http://www.tumblr.com/api/write’;

 // Data for the POST request
 $data = array(
 ‘email’ = > BOJ_STB_TUMBLR_EMAIL,

 ‘password’ = > BOJ_STB_TUMBLR_PASSW,
 ‘type’ = > ‘regular’,
 ‘title’ = > $post_title,
 ‘body’ = > $post_content
);

 // Do the POST request
 $response = wp_remote_post($api,
 array(
 ‘body’ = > $data,
 ‘timeout’ = > 20
)
);

 // All done!
}

? >

 The simple trick here is to hook your function that sends to Tumblr into each action triggered when
a new post is published, which is one of these scenarios:

 Draft post that you eventually publish (action: ‘ draft_to_publish ’)

 A post pending review and now published (action: ‘ pending_to_publish ’)

 A post previously written but set with a future date (action: ‘ future_to_publish ’)

 After you activate your plugin, each post you publish on your WordPress blog is automatically
backed up on your Tumblr account, as shown in Figure 9 - 2.

➤

➤

➤

 FIGURE 9 - 2

Practice: Sending Data to a Remote API ❘ 261

262 ❘ CHAPTER 9 HTTP API

 PRACTICE: READING ARBITRARY CONTENT

 You cannot always poll a remote API with neat results presented in formatted JSON or XML.
Sometimes, you need to fetch arbitrary content, such as a plain HTML page, and extract the
information out of it.

 In Chapter 7, the practical example for using the Transients API included a hypothetical function to
fetch the current song title from an online radio. The code used follows:

 < ?php

// Fetches from an online radio a song title currently on air
function boj_myplugin_fetch_song_title_from_radio() {
 // ... code to fetch data from the remote website
 return $title;
}
? >

 Now it ’ s time you make this function less imaginary and code it to retrieve the song currently on air
on, say, radio KNAC located at http://www.knac.com/ .

 This web site does not offer a convenient API, but after some poking you ’ ll fi nd that its system
generates a text fi le located at http://knac.com/text1.txt and formatted as follow:

text1= < b > NOW PLAYING < /b > : EL DORADO < br > < b > BY: < /b > IRON MAIDEN

 < current_song > EL DORADO
 < current_artist > IRON MAIDEN
 < current_album > THE FINAL FRONTIER

 < last_5_songs_played > 10:32:37 - SLAYER, WAR ENSEMBLE < br > (... snip ...)

 There is a slight resemblance to XML but it ’ s not, and you ’ ll be on your own to parse this fi le. You
use regular expressions to extract the requested information from this text.

 The working function will now be the following:

 < ?php

function boj_myplugin_fetch_song_title_from_radio() {
 $url = ‘http://knac.com/text1.txt’;

 $text = wp_remote_retrieve_body(wp_remote_get($url));

 preg_match(‘/\ < current_song\ > (.*)/’, $text, $matches);
 $song = trim($matches[1]);

 preg_match(‘/\ < current_artist\ > (.*)/’, $text, $matches);
 $artist = trim($matches[1]);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 return “$song by $artist”;
}

? >

 Code snippet plugin_boj_current_title.php

 The regular expression used here to capture the song title, for instance, is ‘ /\ < current_
song\ > (.*)/ ’ , which translates to: string < current_song > followed by any character (the dot)
repeated zero or more times (the *) until the end of the line.

 Regular expressions are a key skill when it comes to parsing arbitrary content. If you are
not familiar with them, they are introduced in Chapter 6, and then you can learn more at
 http://php.net/pcre .

 MAKE YOUR OWN PLUGIN REPOSITORY

 A great trait of WordPress is that when plugins are hosted on http://wordpress.org/extend/
plugins , users see right from their blog administration interface if there is a new version of a
particular plugin, and they can update it without leaving their blog. WordPress ’ central repository is
a key feature of plugin marketing, as you see in detail in Chapter 17, “ Marketing Your Plugins. ”

 This said, not all plugins you create end up available for public use on WordPress ’ repository:
Clients often require that plugins created for their use remain private, or you may want to code
plugins and sell them through your own repository.

 Even if you host your plugin yourself, you can still have your users benefi t from WordPress ’ built - in
upgrade feature.

 How Plugin Upgrades Work in WordPress

 Twice daily, WordPress sends a request to api.wordpress.org with the list of plugins currently
installed. The API server replies with a list of new versions when available and information about
these new versions.

 For instance, if you have on your blog only one plugin installed and active, the request sent as POST
to http://api.wordpress.org/plugins/update-check/1.0/ would be something like this:

 < ?php

// Sample request sent to api.wordpress.org to check for new plugins

$request = array(
 ‘plugins’ = > array (
 ‘boj_myplugin/plugin.php’ = > array (
 ‘Name’ = > ‘My BOJ Plugin’,
 ‘PluginURI’ = > ‘http://example.com/’,
 ‘Version’ = > ‘’,
 ‘Description’ = > ‘This plugin does incredible stuff’,

Make Your Own Plugin Repository ❘ 263

264 ❘ CHAPTER 9 HTTP API

 ‘Author’ = > ‘Ozh’,
 ‘AuthorURI’ = > ‘http://wrox.com/’,
 ‘TextDomain’ = > ‘’,
 ‘DomainPath’ = > ‘’,
 ‘Network’ = > false,
 ‘Title’ = > ‘My BOJ Plugin’,
),
),
 ‘active’ = > array (
 0 = > ‘boj_myplugin/plugin.php’,
),
)
? >

 If your plugin is hosted on wordpress.org , and there is a new version available, the API server will
reply with the following information array:

 < ?php

// Sample response from api.wordpress.org with new plugin versions, if any

$response = array(
 ‘boj_myplugin/plugin.php’ = > array(
 ‘id’ = > 10256,
 ‘slug’ = > ‘boj_myplugin’,
 ‘new_version’ = > ‘2.0’,
 ‘url’ = > ‘http://wordpress.org/extend/plugins/boj_myplugin/’,
 ‘package’ = > ‘http://downloads.wordpress.org/plugin/boj_myplugin.zip’
)
);

? >

 So every 12 hours, your blog checks for new plugin versions and stores the request sent and
the response received in a site transient named ‘ update_plugins ’ , containing the following
information:

 1. ‘ last_checked ’ : the last time it checked

 2. ‘ checked ’ : the list of plugins and their version currently installed

 3. ‘ response ’ : the response from the API server with new version information

 The function responsible for this behavior is wp_update_plugins() , found in fi le wp - includes/
update.php .

 Polling an Alternative API from a Plugin

 You can now code a plugin that also checks an alternative API for a new version about a particular
plugin not hosted on WordPress.

 Just before your blog stores the site transient, the fi lter ‘ pre_set_site_transient_update_
plugins ’ is applied to the transient value. At this point, your plugin sends a request to your
alternative API and appends its response to the transient value. This response contains information
about a new value if applicable, along with a package URL that won ’ t be hosted on wordpress.org .

 < ?php
/*
Plugin Name: BOJ Alternate Plugin API
Plugin URI: http://example.com/
Description: Checks for a new version of itself against a self hosted API
Version: 1.0
Author: Ozh
Author URI: http://wrox.com/
*/

define(‘BOJ_ALT_API’, ‘http://example.com/plugin-api/’);

 This constant defi nes your alternative API that sends information about a new version of this
plugin. You can code the server script for this API later.

 Now, the function that checks the API at the moment the transient is about to be stored follows:

// Hook into the plugin update check
add_filter(‘pre_set_site_transient_update_plugins’, ‘boj_altapi_check’);

// Check alternative API before transient is saved
function boj_altapi_check($transient) {

 // Check if the transient contains the ‘checked’ information
 // If no, just return its value without hacking it
 if(empty($transient- > checked))
 return $transient;

 // The transient contains the ‘checked’ information
 // Now append to it information form your own API

 $plugin_slug = plugin_basename(__FILE__);

 // POST data to send to your API
 $args = array(
 ‘action’ = > ‘update-check’,
 ‘plugin_name’ = > $plugin_slug,
 ‘version’ = > $transient- > checked[$plugin_slug],
);

 // Send request checking for an update
 $response = boj_altapi_request($args);

 // If response is false, don’t alter the transient
 if(false !== $response) {

Make Your Own Plugin Repository ❘ 265

266 ❘ CHAPTER 9 HTTP API

 $transient- > response[$plugin_slug] = $response;
 }

 return $transient;
}

// Send a request to the alternative API, return an object or false
function boj_altapi_request($args) {

 // Send request
 $request = wp_remote_post(BOJ_ALT_API, array(‘body’ = > $args));

 // Make sure the request was successful
 if(is_wp_error($request)
 or
 wp_remote_retrieve_response_code($request) != 200
) {
 // Request failed
 return false;
 }

 // Read server response, which should be an object
 $response = unserialize(wp_remote_retrieve_body($request));
 if(is_object($response)) {
 return $response;
 } else {
 // Unexpected response
 return false;
 }
}

 The purpose of the function boj_altapi_check() is to insert into the transient information about
your plugin coming from another place than WordPress ’ repository, and in particular the URL of
the new download package.

 At this point, if the alternative API replies that a new version for this plugin is available, you see an
upgrade link (see Figure 9 - 3) and can run the built - in upgrader with your own package URL (see
Figure 9 - 4).

 FIGURE 9 - 3

 But things are not perfect yet: You need to also take care of the View Version Details link which,
at this point, would still fetch detailed information from api.wordpress.org and thus display a
blank screen.

 The internal function you need to take over is plugins_api() (found in wp - admin/includes/
plugin - install.php) and that uses the fi lter ‘ plugins_api ’ :

// Hook into the plugin details screen
add_filter(‘plugins_api’, ‘boj_altapi_information’, 10, 3);

function boj_altapi_information($false, $action, $args) {

 $plugin_slug = plugin_basename(__FILE__);

 // Check if this plugins API is about this plugin
 if($args- > slug != $plugin_slug) {
 return false;
 }

 // POST data to send to your API
 $args = array(
 ‘action’ = > ‘plugin_information’,
 ‘plugin_name’ = > $plugin_slug,
 ‘version’ = > $transient- > checked[$plugin_slug],
);

 // Send request for detailed information
 $response = boj_altapi_request($args);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 4

Make Your Own Plugin Repository ❘ 267

268 ❘ CHAPTER 9 HTTP API

 // Send request checking for information
 $request = wp_remote_post(BOJ_ALT_API, array(‘body’ = > $args));

 return $response;
}
? >

 Code snippet boj_altapi.php

 Now if you click the detailed information
link, your plugin can pull information from
your own API, as shown on Figure 9 - 5.

 Building the Alternative API

 Of course, your plugin is completely
dependent on the alternative API that must
reply with information about the plugin.
Fortunately, such an API is fairly easy to
implement.

 On a remote server, defi ned as ‘ http://
example.com/plugin - api/ ’ in the plugin,
a single script can handle the two types of
requests your plugin can issue:

 Check for a new version (action
parameter: ‘ update - check ’) that
needs a reply with a newer version number and a package URL where to download the
newer plugin.

 Check for detailed information about an updated plugin (action parameter:
 ‘ plugin_information ’)

 < ?php

$action = $_REQUEST[‘action’];
$slug = $_REQUEST[‘plugin_name’];

// Create new object
$response = new stdClass;

switch($action) {

 // API is asked for the existence of a new version of the plugin
 case ‘update-check’:
 $response- > slug = $slug;
 $response- > new_version = ‘2.0’;
 $response- > url = ‘http://example.com/boj-altapi/’;
 $response- > package = ‘http://example.com/plugin-api/boj_altapi.zip’;

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 9 - 5

 break;

 // Request for detailed information
 case ‘plugin_information’:
 $response- > slug = ‘boj_altapi.php’;
 $response- > plugin_name = ‘boj_altapi.php’;
 $response- > new_version = ‘2.0’;
 $response- > requires = ‘2.9.2’;
 $response- > tested = ‘3.5’;
 $response- > downloaded = 12540;
 $response- > last_updated = “2010-08-23”;
 $response- > sections = array(
 ‘description’ = > ‘This plugin checks against a self-hosted API’,
 ‘changelog’ = > ‘New features added!’
);
 $response- > download_link = ‘http://example.com/plugin-api/boj_altapi.
zip’;
 break;

}

echo serialize($response);
? >

 Code snippet plugin - api/index.php

 This single script generates a response object, which needs to be serialized (that is, transformed into
a string), for printing purpose. The key variable in its response is the URL of a zip package that is
not hosted on wordpress.org .

 A Few Words of Caution About Self - Hosted API

 The fl exibility of WordPress ’ plugin API enables all sorts of customization, including not being tied
to wordpress.org if needed.

 This being said, you should consider hosting your plugins on wordpress.org if you intend
to release them publicly. You learn in Chapter 17 how doing so can play a great role in your
promotion strategy.

 SPECIAL CASE: FETCHING REMOTE FEEDS

 The HTTP API functions can fetch any type of remote content, such as HTML, images, zip
archives, or JSON data. To fetch remote RSS feeds though, there is a better alternative: WordPress
ships with SimplePie, a third - party popular and effi cient RSS and Atom feed parser.

 The function you use is fetch_feed() , which needs a single argument (the feed URL such as
 http://example.com/feed/) and returns either a WP_Error object on failure or a SimplePie object
on success.

 To illustrate how to use fetch_feed() and its return, you can now get the fi ve latest articles from a
web site and display their title, publication date, and link.

Special Case: Fetching Remote Feeds ❘ 269

270 ❘ CHAPTER 9 HTTP API

 < ?php

// Get a SimplePie object from a feed source.
$rss = fetch_feed(‘http://example.com/feed/’);

// Make sure the SimplePie object is created correctly
if(is_wp_error($rss))
 wp_die(‘Could not fetch feed’);

echo ‘Feed found, contains ‘. $rss- > get_item_quantity() . ‘ articles.’;

// Build an array of 5 elements, starting from item #0
$rss_items = $rss- > get_items(0, 5);

// Start ordered list
echo ‘ < ol > ’;

// Loop through each item and display its link, title and date
foreach($rss_items as $item) {
 $title = $item- > get_title();
 $date = $item- > get_date(‘Y/m/d @ g:i a’);
 $link = $item- > get_permalink();

 echo “ < li > < a href=’$link’ > $title < /a > ($date) < /li > \n”;
}

// Close ordered list
echo ‘ < /ol > ’;
? >

 When polled using fetch_feed() , web site feeds are cached for 12 hours by default and stored in a
transient.

 The SimplePie class has numerous methods that you can become acquainted with at this address:
 http://simplepie.org/wiki/reference/start .

 SUMMARY

 The HTTP API functions are a bridge between your blog and a whole world of interaction with
remote services. Practically all modern web services offer an API for developers to use, and this
widens even more the scope of possibilities for WordPress plugins.

 The one thing you should retain from this chapter is that you should forget what you have done in a
pre - WordPress life, when you probably got used to coding HTTP requests using CURL. As you have
learned here, relying on the WordPress API enables much more fl exibility (leveraging the internal
hooks of the API) and security because you can be confi dent WordPress will pick the best functions
available to perform requests.

The Shortcode API

 WHAT ’ S IN THIS CHAPTER?

 Creating custom shortcode

 Registering complex and parameterized shortcodes

 Mastering advanced shortcode tips

 Connecting your site with Google Maps

 Shortcodes are WordPress - specifi c code that enables you to do nifty things with little effort,
such as embed content or create objects that would normally require lots of complicated,
ugly code.

 In this chapter, you learn how to allow users of your plugins to enhance their posts with
advanced customizable content using just a few characters.

 CREATING SHORTCODES

 This section teaches you what a shortcode is and how to create new shortcodes, from simple
string replacements to advanced functions with parameters.

 What Shortcodes Are

 The Shortcode API enables creating simple macro codes, sometimes also referred to as
bbcodes for their similarity with a popular syntax in various forums and bulletin boards.

 In a nutshell, a shortcode is a simple tag syntax between square brackets, such as [something] ,
used in posts. At render time when the post is displayed, the shortcode is dynamically replaced
with a more complex and user - defi ned content. See Figure 10 - 1 for a simple example of a
shortcode plugin that would substitute [date] with the current date and time.

➤

➤

➤

➤

 10

272 ❘ CHAPTER 10 THE SHORTCODE API

 FIGURE 10 - 1

 WordPress out - of - the - box registers shortcodes you can use: When you upload multiple images
attached to a given post, you can simply insert [gallery] in your post, and this shortcode will be
replaced with a nicely formatted gallery of your images.

 Technically, a shortcode can be any string that would fi t as an array key. For instance, you could
register the following different shortcodes:

 [foo]

 [Foo]

 [123]

 [l33t]

 [Hello My Name Is Inigo Montoya]

 In practice, for simplicity, and to avoid potential confl icts between different shortcodes, you register
only short, lowercase, simple strings.

➤

➤

➤

➤

➤

 You must not register for your own use the following shortcodes: [wp_caption] ,
 [caption] , [gallery] and [embed] . These are registered by WordPress.

 Register Custom Shortcodes

 You now learn how to register your own shortcodes, with practical usages, from a simple tag
replacement to more complex and parameterized output.

 The following shortcode plugins use boj_scX as a prefi x, where X will be a number.

 [book]

 The simplest usage of shortcodes is to quicken your typing and replace often - used sentences with
something shorter to type or easier to remember.

 For instance, if you frequently mention a book you want to promote on Amazon, instead of typing
 “ < a href= “ http://www.amazon.com/dp/0470560541 “ > book < /a > ” each time, wouldn ’ t it be faster
to just write [book] ?

 The function you use is add_shortcode() , which needs two parameters:

 The tag pattern (without the surrounding square brackets)

 A callback function used to replace the tag

 < ?php
/*
Plugin Name: Shortcode Example 1
Plugin URI: http://example.com/
Description: Replace [book] with a long Amazon link
Version: 1.0
Author: Ozh
Author URI: http://wrox.com/
*/

// Register a new shortcode: [book]
add_shortcode(‘book’, ‘boj_sc1_book’);

// The callback function that will replace [book]
function boj_sc1_book() {
 return ‘ < a href=”http://www.amazon.com/dp/0470560541” > book < /a > ’;
}

? >

 Code snippet plugin_boj_sc1.php

 What just happened?

 1. With add_shortcode() , you have registered [book] as a new shortcode, stating that it will
be replaced with the output of the function boj_sc1_book()

 2. The shortcode callback function, here boj_sc1_book() , needs to return a value in the end.
A frequent beginner error is to have it echo a value instead of returning it, which will make
the shortcode fail.

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Creating Shortcodes ❘ 273

274 ❘ CHAPTER 10 THE SHORTCODE API

 Activate the plugin, and from now on, write “ Buy my [book] ” in a post or a page, and it will be
replaced with the Amazon link.

 Note that WordPress is rather fl exible on the shortcode syntax: You can more or less mimic XHTML
tags and either type [book] , [book] , [book/] or [book /] . The only requirement is that there is no
space between the opening square bracket and the tag.

 [books title= “ xkcd ”]

 What if you have more than one book to promote?

 The fi rst option would be to create several simple shortcodes as previously done, one per book (for
instance [book1] , [book2] , [book3], and so on). A more elegant option you can use is to introduce
an attribute to the shortcode, so it enables a smarter syntax such as [book title= “ prowp “] and
 [book title= “ xkcd “] .

 You can use the same function add_shortcode() again but now with a new parameter $attr that
receives an array of attribute = > value pairs.

 < ?php
/*
Plugin Name: Shortcode Example 2
Plugin URI: http://example.com/
Description: Replace [books title=”xxx”] with different Amazon links
Version: 1.0
Author: Ozh
Author URI: http://wrox.com/
*/

// Register a new shortcode: [books title=”xxx”]
add_shortcode(‘books’, ‘boj_sc2_multiple_books’);

// The callback function that will replace [books]
function boj_sc2_multiple_books($attr) {

 switch($attr[‘title’]) {
 case ‘xkcd’:
 $asin = ‘0615314465’;
 $title = ‘XKCD Volume 0’;
 break;

 default:
 case ‘prowp’:
 $asin = ‘0470560541’;
 $title = ‘Professional WordPress’;
 break;
 }

 return “ < a href=’http://www.amazon.com/dp/$asin’ > $title < /a > ”;
}
? >

 Code snippet plugin_boj_sc2.php

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 What just happened?

 1. You have registered a new shortcode, [books].

 2. Your callback function boj_sc2_multiple_books() expects a parameter: $attr will
be an array of attribute = > value pair used in the shortcode. For instance, write [books
title= “ prowp “] and the callback function will receive array(‘ title ’ = > ‘ prowp ’)
as its parameter.

 3. Your callback function can now return different values depending on the attribute used.

 4. If you write [books] with no attribute, the callback function receives an empty string. You
have coded it to return a default value in such a case.

 [amazon asin= “ 12345 ”]book title[/amazon]

 You can continue to push the plugin forward with a new improvement: The anchor text in the
Amazon link will now be parameterized.

 The function used will still be the same add_shortcode() , this time with a second parameter
 $content , which will receive any enclosed text as a string:

 < ?php
/*
Plugin Name: Shortcode Example 3
Plugin URI: http://example.com/
Description: Replace [amazon isbn=”xxx”]book title[/amazon]
Version: 1.0
Author: Ozh
Author URI: http://wrox.com/
*/

// Register a new shortcode: [amazon isbn=”123”]link title[/amazon]
add_shortcode(‘amazon’, ‘boj_sc3_amazon’);

// Callback function for the [amazon] shortcode
function boj_sc3_amazon($attr, $content) {

 // Get ASIN (Amazon Standard Identification Number)
 if(isset($attr[‘asin’])) {
 $asin = preg_replace(‘/[^\d]/’, ‘’, $attr[‘asin’]);
 } else {
 $asin = ‘0470560541’;
 }

 // Sanitize content, or set default
 if(!empty($content)) {
 $content = esc_html($content);
 } else {
 if($asin == ‘0470560541’) {
 $content = ‘Professional WordPress’;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Creating Shortcodes ❘ 275

276 ❘ CHAPTER 10 THE SHORTCODE API

 } else {
 $content = ‘this book’;
 }
 }

 return “ < a href=’http://www.amazon.com/dp/$asin’ > $content < /a > ”;
}
? >

 Code snippet plugin_boj_sc3.php

 What just happened?

 1. You have registered another shortcode, using the tag [amazon].

 2. Your callback function, boj_sc3_amazon() , now expects two optional parameters: an
array of attribute = > value pairs, and a text string enclosed between the opening and the
closing shortcodes.

 3. The callback function can deal with all the combinations of missing ASIN attribute
(Amazon Standard Identifi cation Number) and/or book title: [amazon] , [amazon
asin= “ 123 “] , and [amazon]awesome book[/amazon] would fl awlessly work.

 4. Your shortcode can return arbitrary content, so remember to apply techniques you have
learned in Chapter 6, “ Plugin Security ” : Sanitize the ASIN to be only digits and make sure
the book title can be safely displayed and your blog and won ’ t break the < a > tag in which it
is enclosed.

 Wrap Up: add_shortcode() and the callback Function

 When you register a new shortcode, the two parameters defi ne the square bracket tag pattern and
the callback function:

 < ?php

add_shortcode(‘boj’, ‘boj_my_shortcode’);

? >

 The callback function receives two parameters, empty if omitted: an array of attribute = > value
pairs, and a string of content enclosed within the opening and closing shortcode. Just as in HTML,
the attributes are case - insensitive.

 You can defi ne default values just as in any other PHP function, and in the end the function must
return something.

 < ?php

function boj_my_shortcode($attr = array(‘var’ = > ‘val’), $content = ‘book’) {
 // $attr is an associate array

 // $content is a string

 return $something;
}

? >

 The shortcode attributes are case - insensitive, can have arbitrary or no value, and support quotes or
lack thereof. The following examples show the values of the array $attr in the callback function,
depending on how the shortcode is used:

 [boj] : $attr will be an empty string.

 [boj hello] : $attr will be array(‘ hello ’).

 [boj name=ozh skillz= ‘ 1337 ’ MAP= “ q3dm6 “] : $attr will be array (‘ name ’ = >
 ‘ ozh ’ , ‘ skillz ’ = > ‘ 1337 ’ , ‘ map ’ = > ‘ q3dm6 ’).

 SHORTCODE TIPS

 Shortcodes are a great way to spice up post contents with complex and dynamic content. To
guarantee the best end user experience, as a plugin author you should keep in mind two principles:

 Make things simple and fool proof.

 Remember it ’ s dynamic.

 Think Simplicity for the User

 As a plugin user, it ’ s great to add new features to one ’ s blog and being allowed to write a simple
shortcode that can display much more complex content. But it ’ s cumbersome to remember
the shortcode parameter syntax: you end up with the impression that you have to learn a new
markup language.

 Back to your plugin with the [amazon] shortcode: You can now code a companion plugin that will
add the shortcode [amazonimage] to display product images from Amazon. You can specify the
ASIN number, the image type (books or CD covers), and its size.

 When functional, the plugin permit shortcodes such as [amazonimage asin= ‘ 123456 ’ type= ‘ CD ’
imagesize= ‘ small ’] .

 When users have this plugin installed for a long time, they might have forgotten about the attribute
names and syntax. Is it [amazonimage] or [amazonimg] ? As for the attributes, is it isbn or asin ?
And imagesize= ‘ large ’ or ‘ big ’ ? type= ‘ CD ’ or type= ‘ disk ’ ?

 Allowing lots of options is neat, but you don ’ t want your users having to check the plugin
documentation and give them a bad experience. Instead, make things simple and foolproof so that
users can use your plugin instinctively.

➤

➤

➤

➤

➤

Shortcode Tips ❘ 277

278 ❘ CHAPTER 10 THE SHORTCODE API

 Now to the plugin:

 < ?php
/*
Plugin Name: Shortcode Example 4
Plugin URI: http://example.com/
Description: Replace [amazonimage] with images from Amazon
Version: 1.0
Author: Ozh
Author URI: http://wrox.com/
*/

// Register two shortcodes [amazonimage] and [amazonimg]
add_shortcode(‘amazonimage’, ‘boj_sc4_amazonimage’);
add_shortcode(‘amazonimg’, ‘boj_sc4_amazonimage’);

// Callback function for the shortcode
function boj_sc4_amazonimage($attr, $content) {

 // Get ASIN or set default
 $possible = array(‘asin’, ‘isbn’);
 $asin = boj_sc4_find($possible, $attr, ‘0470560541’);

 // Get affiliate ID or set default
 $possible = array(‘aff’, ‘affiliate’);
 $aff = boj_sc4_find($possible, $attr, ‘aff_id’);

 // Get image size if specified
 $possible = array(‘size’, ‘image’, ‘imagesize’);
 $size = boj_sc4_find($possible, $attr, ‘’);

 // Get type if specified
 if(isset($attr[‘type’])) {
 $type = strtolower($attr[‘type’]);
 $type = ($type == ‘cd’ || $type == ‘disc’) ? ‘cd’ : ‘’;
 }

 // Now build the Amazon image URL
 $img = ‘http://images.amazon.com/images/P/’;
 $img .= $asin;
 // Image option: size
 if($size) {
 switch($size) {
 case ‘small’:
 $size = ‘_AA100’;
 break;
 default:
 case ‘medium’:
 $size = ‘_AA175’;
 break;
 case ‘big’:
 case ‘large’:
 $size = ‘_SCLZZZZZZZ’;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 break; // Good practice: don’t forget the last break
 }
 }
 // Image option: type
 if($type == ‘cd’) {
 $type = ‘_PF’;
 }
 // Append options to image URL, if any
 if($type or $size) {
 $img .= ‘.01.’ . $type . $size;
 }
 // Finish building the image URL
 $img .= ‘.jpg’;

 // Now return the image
 return “ < a href=’http://www.amazon.com/dp/$asin’ > < img src=’$img’ / > < /a > ”;
}

// Helper function:
// Search $find_keys in array $in_array, return $default if not found
function boj_sc4_find($find_keys, $in_array, $default) {
 foreach($find_keys as $key) {
 if(isset($in_array[$key]))
 return $in_array[$key];
 }
 return $default;
}
? >

 Code snippet plugin_boj_sc4.php

 The fi rst thing you ’ ll notice is that you have registered two shortcodes with the same callback
function: This way, the user can either use [amazonimage] or [amazonimg] .

 Then look at how the plugin considers multiple attributes as synonyms: Using the helper function
named boj_sc4_find() , the main callback function checks the value of $attr[‘ asin ’] or
 $attr[‘ isbn ’] , and if omitted, sets a default value.

 As non - WordPress information, it ’ s also worth mentioning that the fun part in this plugin is to
leverage the way Amazon crafts image URLs. The base URL is http://images.amazon.com/
images/P/ , to which you append the following:

 The ASIN number, such as ‘ B002OEBMN4 ’ .

 If you want to add options, append ‘ .01. ’

 A fi rst possible option used here is the size: Append for instance ‘ _AA100 ’ for 100 pixels
wide, or ‘ _SCLZZZZZZZ ’ for a large image.

 Another possible option used is to add a CD image beneath the cover: Append ‘ _PF ’ to the
image URL.

 Finally, make the image URL end with ‘ .jpg ’ .

➤

➤

➤

➤

➤

Shortcode Tips ❘ 279

280 ❘ CHAPTER 10 THE SHORTCODE API

 Activate the plugin, write a post with “ Currently listening to [amazonimage asin=
 “ B00008WT5E ” type= “ cd ” size= “ small “] ” and see the result that should look like Figure 10 - 2.

 FIGURE 10 - 2

 Remember the Dynamicity

 Shortcode outputs are dynamically generated: Every time WordPress displays a page (a single post,
an archive), the post content is parsed, and shortcodes are replaced with the returned result of their
callback function.

 Replacements such as the one you coded in this chapter so far are lightning fast, and you don ’ t have
to worry about WordPress ’ performance when you register new shortcodes.

 However, performance will be a matter of importance if your shortcodes either pull information
from the database or from remote web sites:

 In the fi rst case, your code will issue extra SQL queries, which can hinder performance on
slow web hosts.

 In the second case, your shortcode will perform external HTTP requests that could slow down
the whole page rendering, while WordPress is awaiting the remote server response to parse.

 In such cases, you should consider caching the result of your shortcode, for instance in the post
metadata. In the next plugin, you implement such a caching technique.

➤

➤

 Look Under the Hoods

 Besides using add_shortcode() to register new ones, here are other interesting functions or facts to
know about the Shortcode API and then a fun plugin to make use of them.

 $shortcode_tags

 All registered shortcodes are stored in the global array $shortcode_tags , in ‘ shortcode ’ = >
 ‘ callback ’ pairs:

 < ?php

global $shortcode_tags;
var_dump($shortcode_tags);

/* Result:
array (
 ‘wp_caption’ = > ‘img_caption_shortcode’,
 ‘caption’ = > ‘img_caption_shortcode’,
 ‘gallery’ = > ‘gallery_shortcode’,
 ‘embed’ = > ‘__return_false’,
 ‘amazonimage’ = > ‘boj_sc4_amazonimage’,
 ‘amazonimg’ = > ‘boj_sc4_amazonimage’,
)
*/

? >

 remove_shortcode()

 You can dynamically unregister a shortcode using the function remove_shortcode() .

 Example: remove_shortcode(‘ amazonimg ’);

 remove_all_shortcodes()

 Similarly, you can dynamically unregister all the shortcodes, using the function remove_all_
shortcodes() with no argument. Technically, this function simply resets the global $shortcode_
tags to an empty array.

 strip_shortcodes()

 The function strip_shortcodes() strips registered shortcodes from string content, as in the
following example:

 < ?php

$content = < < < S
Some existing shortcodes: [amazonimage] [gallery]
These don’t exist: [bleh] [123]
S;

Shortcode Tips ❘ 281

282 ❘ CHAPTER 10 THE SHORTCODE API

echo strip_shortcodes($content);

/* Result:
Some existing shortcodes:
These don’t exist: [bleh] [123]
*/
? >

 shortcode_atts()

 This function can be used to compare user attributes against a list of supported attributes and fi ll in
defaults when needed.

 For instance, look at how the built - in shortcode [gallery] works. Its callback function is gallery_
shortcode() , which processes the shortcode attributes like so:

 < ?php

function gallery_shortcode($attr){

 // Define supported attributes and their default values
 $defaults = array(
 ‘order’ = > ‘ASC’,
 ‘orderby’ = > ‘menu_order ID’,
 ‘id’ = > $post- > ID,
 ‘itemtag’ = > ‘dl’,
 ‘icontag’ = > ‘dt’,
 ‘captiontag’ = > ‘dd’,
 ‘columns’ = > 3,
 ‘size’ = > ‘thumbnail’,
 ‘include’ = > ‘’,
 ‘exclude’ = > ‘’
);

 // Filter user entered attributes and set default if omitted
 $options = shortcode_atts($defaults, $attr);

 // [.. code continues ..]
 // File: wp-includes/media.php

}
? >

 After the exhaustive list of supported attributes and their default values is set in array $defaults , it
is combined with the user input attributes in array $attr , and any unknown attribute is ignored.

 do_shortcode()

 The function do_shortcode() searches the string content passed as its parameter for shortcodes,
and processes them. When WordPress initializes, it hooks the fi lter ‘ the_content ’ to this function,
so that post contents are taken care of:

 < ?php

// In wp-includes/shortcodes.php
add_filter(‘the_content’, ‘do_shortcode’, 11);
? >

 Recursive Shortcodes

 It can happen that the content enclosed in a shortcode may contain other shortcodes. For instance,
you can register [b] and [i] to display bold and italic text, and it should work with a nested
structure such as “ [b]some [i]text[/i] here[/b] ” .

 This is no problem because the callback function of a shortcode can recursively call do_shortcode():

 < ?php
// add shortcodes [b] and [i]
add_shortcode(‘i’, ‘boj_sc5_italic’);
add_shortcode(‘b’, ‘boj_sc5_bold’);

// callback function: return bold text
function boj_sc5_bold($attr, $content) {
 return ‘ < strong > ’ . do_shortcode($content) . ‘ < /strong > ’;
}

// callback function: return italic text
function boj_sc5_italic($attr, $content) {
 return ‘ < em > ’ . do_shortcode($content) . ‘ < /em > ’;
}

? >

 Code snippet plugin_boj_sc5.php

 Each callback function applies shortcodes to its enclosed text to make sure each shortcode is
processed.

 A “ bb code ” for Comments Plugin

 You can now code a new plugin to enable BB - like tags in comments: Instead of using regular HTML
tags such as < a > or < b > , commenters need to use [url] and [b] like in most forums.

 The plugin will also have the following traits:

 It should not change how authors write their posts (with HTML tags as usual).

 It should not apply to comments shortcodes otherwise registered for posts, such as
 [amazonimage] in your previous plugin or [gallery] .

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Shortcode Tips ❘ 283

284 ❘ CHAPTER 10 THE SHORTCODE API

 The plugin follows:

 < ?php
/*
Plugin Name: Shortcode Example 6
Plugin URI: http://example.com/
Description: Enables [url] and [b] shortcodes in comments
Version: 1.0
Author: Ozh
Author URI: http://wrox.com/
*/

// Hook into ‘comment_text’ to process comment content
add_filter(‘comment_text’, ‘boj_sc6_comments’);

// This function processes comment content
function boj_sc6_comments($comment) {

 // Save registered shortcodes:
 global $shortcode_tags;
 $original = $shortcode_tags;

 // Unregister all shortcodes:
 remove_all_shortcodes();

 // Register new shortcodes:
 add_shortcode(‘url’, ‘boj_sc6_comments_url’);
 add_shortcode(‘b’, ‘boj_sc6_comments_bold’);
 add_shortcode(‘strong’, ‘boj_sc6_comments_bold’);

 // Strip all HTML tags from comments:
 $comment = wp_strip_all_tags($comment);

 // Process comment content with these shortcodes:
 $comment = do_shortcode($comment);

 // Unregister comment shortcodes, restore normal shortcodes
 $shortcode_tags = $original;

 // Return comment:
 return $comment;
}

// the [b] or [strong] to < strong > callback
function boj_sc6_comments_bold($attr, $text) {
 return ‘ < strong > ’ . do_shortcode($text) . ‘ < /strong > ’;
}

// the [url] to < a > callback
function boj_sc6_comments_url($attr, $text) {
 $text = esc_url($text);

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 return “ < a href=\”$text\” > $text < /a > ”;
}

? >

 Code snippet plugin_boj_sc6.php

 What just happened?

 1. As you can see, your plugin does not register new shortcodes [url] and [b] directly from
the start; otherwise, they would interfere with the post contents. Instead, the plugin starts
with capturing each comment’s contents.

 2. The comment processing function, boj_sc5_comments() , fi rst unregisters all shortcodes
after making a copy of them.

 3. New shortcodes are then registered: [url] and [b]. ([strong] will be equivalent to [b] ,
for user ’ s simplicity.)

 4. The comment content, kept in the variable $comment , is expurgated from regular HTML
tags and then applied to the newly registered shortcodes.

 5. Notice how the shortcode callback function for bold text recursively calls do_shortcode() ,
enabling for nested structures.

 6. Original shortcodes are restored; the comment shortcodes [url] and [b] are unregistered
by the way.

 7. The formatted comment content is returned for display.

 Activate the plugin and type in a new comment: See in Figure 10 - 3 how HTML tags are ignored;
 [b] and [url] shortcodes are processed but regular shortcodes such as [gallery] , which would
otherwise apply to posts, are not.

 FIGURE 10 - 3

Shortcode Tips ❘ 285

286 ❘ CHAPTER 10 THE SHORTCODE API

 Shortcode Nesting Limitations

 As you have read previously, WordPress can handle nested shortcode structures, provided their
callback functions recursively call do_shortcode() . However, this handling has limitations and can
sometimes fail, as you will see now.

 The following structure is fi ne because nested shortcodes are different, and each one is correctly
enclosed:

Works:
[foo]
 [bar]
 [baz]
 [/bar]
[/foo]

 The parser will fail if you enclose a shortcode within the same shortcode:

Fails:
[foo]
 [foo]
 [/foo]
[/foo]

 Also, remember that shortcodes can be self - closing (a standalone [foo] or [foo/]) or enclose
content ([foo]content[/foo]), which can also make some structures impossible to parse correctly:

Fails:
[foo]
[foo]
 content
[/foo]

 INTEGRATING GOOGLE MAPS

 As a complete and more complex example using shortcodes, you now make a plugin that can
integrate Google Maps into your WordPress - powered web site.

 Google offers many different APIs for accessing its services and in particular the mapping service,
which uses two related services: a geocoding API and the map API.

 Google provides extensive documentation on the Google Maps API. You can
fi nd more information at http://code.google.com/apis/maps/documentation/
javascript/ .

 In this section, you code a plugin to convert a plain text address (such as “ 111 River Street
Hoboken, NJ 07030 ”) into a dynamically generated interactive Google map.

 Accessing the Google Geocoding API

 The fi rst step to convert an address into a map is to “ geocode ” this address. Geocoding is defi ned
as the process of converting a standard address (like “ 108 Ocean Ave. Amityville, NY 11701 ”) to
geographic longitude and latitude coordinates (“ 40.6665060, - 73.4147750 ”). These coordinates are
used by the Google Maps API to locate specifi c positions on a map and to plot markers on a map
based on the coordinates specifi ed.

 Currently the Google Geocoding API can return results in two formats: JSON or XML. In this
example you use the JSON format and work with the techniques discussed in Chapter 9, “ HTTP
API, ” about HTTP requests.

 Google has made the process of interacting with its API simple. To retrieve coordinates you can
request the following URL: http://maps.google.com/maps/api/geocode/$output?$parameters
where $output will be the format output (for instance ‘ json ’) and $parameter will be a query
string of additional parameters to geocode.

 You need to pass only two required parameters to this API: address or latlng and sensor :

 Because you don ’ t know the latitude and longitude coordinates, you use the address
parameter. This parameter is the full, plain text address you want to geocode, in its URL
encoded form.

 The sensor parameter indicates whether the request comes from a device with a location
sensor (such as a smartphone). You set this variable to false.

 You can easily test this by loading the geocoding API URL in any browser and populating the
required parameters: http://maps.google.com/maps/api/geocode/json?address=1600+Pennsylv
ania+Ave,+Washington,+DC & sensor=false.

 As you can see, the JSON results returned contain the longitude and latitude coordinates of the
address and additional data such as the ZIP code (which we didn ’ t send in the request).

 Now write the function boj_gmap_geocode() that will geocode an address:

 < ?php

// Geocode an address: return array of latitude & longitude
function boj_gmap_geocode($address) {
 // Make Google Geocoding API URL
 $map_url = ‘http://maps.google.com/maps/api/geocode/json?address=’;
 $map_url .= urlencode($address).’ & sensor=false’;

 // Send GET request
 $request = wp_remote_get($map_url);

 // Get the JSON object
 $json = wp_remote_retrieve_body($request);

➤

➤

Integrating Google Maps ❘ 287

288 ❘ CHAPTER 10 THE SHORTCODE API

 // Make sure the request was successful or return false
 if(empty($json))
 return false;

 // Decode the JSON object
 $json = json_decode($json);

 // Get coordinates
 $lat = $json- > results[0]- > geometry- > location- > lat; //latitude
 $long = $json- > results[0]- > geometry- > location- > lng; //longitude

 // Return array of latitude & longitude
 return compact(‘lat’, ‘long’);
}
? >

 This function sends a request to the Google Maps Geocoding API, and receives a JSON response
which, when decoded, contains latitude and longitude. Test it to check the return value format:

 < ?php

$coords = boj_gmap_geocode(‘108 Ocean Ave. Amityville, NY’);

var_dump($coords);

/* Result:
array(2) {
 [“lat”]= > float(40.666506)
 [“long”]= > float(-73.414775)
}
*/
? >

 For more details and explanation on the functions used in this function, refer to Chapter 9.

 Storing API Results

 One important aspect of shortcodes is that they generate content dynamically each time. But that
would not be effi cient to issue an HTTP request to the Google Maps Geolocation API each time a
post is displayed because it would slow down each page load.

 As an alternative, when an address has been geolocated, you can store its coordinates in metadata
attached to the post. This way, next time the same post displays, the latitude and longitude will
be automatically fetched from the database with all other post metadata, thus saving one HTTP
request.

 Post metadata, accessible in the WordPress write interface as “ Custom Post
Fields, ” is fetched at the same time as the post data itself, so reading information
stored there does not issue an extra SQL query. You learn more about post meta-
data in Chapter 11, “ Extending Posts. ”

 Instead of getting coordinates from Google ’ s API using the function boj_gmap_geocode() , you can
use the proxy function boj_gmap_get_coords() that fi rst checks for the information in the post
metadata. If the information is missing, it will be fetched fresh from Google and then stored in
the metadata for faster later reuse.

 Following is your proxy function:

 < ?php

// Convert a plain text address into latitude & longitude coordinates
// Retrieved from meta data if possible, or get fresh then cached otherwise
function boj_gmap_get_coords($address = ‘111 River Street Hoboken, NJ’) {

 // Current post id
 global $id;

 // Check if we already have this coordinates in the database
 $saved = get_post_meta($id, ‘boj_gmap_addresses’);
 foreach((array)$saved as $_saved) {
 if(isset($_saved[‘address’]) & & $_saved[‘address’] == $address) {
 extract($_saved);
 return compact(‘lat’, ‘long’);
 }
 }

 // Coordinates not cached: let’s fetch them from Google
 $coords = boj_gmap_geocode($address);
 if(!$coords)
 return false;

 // Cache result in a post meta data
 add_post_meta($id, ‘boj_gmap_addresses’, array(
 ‘address’ = > $address,
 ‘lat’ = > $coords[‘lat’],
 ‘long’ = > $coords[‘long’]
)
);

 extract($coords);
 return compact(‘lat’, ‘long’);
}

? >

 Each time an address is geolocated for the fi rst time, the add_post_meta() call inserts into the post
metadata named ‘ boj_gmap_addresses ’ an array like the following:

array(
 “address” = > “108 Ocean Ave. Amityville, NY “,
 “lat” = > “40.666506”,
 “long” = > “-73.414775”
)

 On the next page load, the coordinates should be found and retrieved from the post metadata.

Integrating Google Maps ❘ 289

290 ❘ CHAPTER 10 THE SHORTCODE API

 Accessing the Google Maps API

 Now that you know how to convert an address into longitude and latitude coordinates using the
Google Geocoding API, you can plot those coordinates on a Google Map using the Google Maps API.

 API Concepts

 Interactive Google Maps are created using JavaScript that must be inserted in the page where you
want the map to display. Before integrating it straight into your plugin, you learn how to embed
such a map in an HTML page:

 First, you need to insert the main script:

 < script type=”text/javascript”
 src=”http://maps.google.com/maps/api/js?sensor=false” >

 Then, insert the map-specifi c JavaScript part, enclosed in its own function:

function initialize_map() {

 An object holds a new instance of a Google Map, with specifi c latitude and longitude parameters:

 var myLatlng = new google.maps.LatLng(45.124099,-123.113634);

 Another object can defi ne the map options: its zoom level, where it should be centered, and the map
type (terrain, road, satellite, or hybrid):

 var myOptions = {
 zoom: 4,
 center: myLatlng,
 mapTypeId: google.maps.MapTypeId.SATELLITE
 }

 Now, you attach the map to an HTML object such as a <div> ; here with attribute id “map_canvas”:

 var map = new google.maps.Map(document.getElementById(“map_canvas”), myOptions);

 The following string holds a custom text that displays in the information window showing when
clicking the marker on the map:

 var contentString = ‘ < div id=”content” > ’+
 ‘ < p > < b > Firefox Crop Circle < /b > : Somewhere in a field in Oregon’+
 ‘, this 67 metre wide icon was created by the Oregon State University’+
 ‘Linux Users Group to celebrate the launch of Firefox version 2 < /p > ’+
 ‘ < /div > ’+
 ‘ < /div > ’;

 This string is now attached to a new instance of the InfoWindow object:

 var infowindow = new google.maps.InfoWindow({
 content: contentString
 });

 Now, place a marker on your map:

 var marker = new google.maps.Marker({
 position: myLatlng,
 map: map,
 title: ‘Firefox Crop Circle’
 });

 And fi nally add behavior so that the information window pops up when the marker is clicked:

 google.maps.event.addListener(marker, ‘click’, function() {
 infowindow.open(map,marker);
 });
}

 Almost done! Now create the empty HTML object that will receive the map, and call the JavaScript
function that will display it:

 < p > The map will display here: < /p >
 < div id=”map_canvas” style=”width:600px;height:600px” > < /div >
 < script type=”text/javascript” > initialize_map() < /script >

 Code snippet google_map_api_example.html

 This fi le outlines the concept of the Google Maps API and displays a map, as shown in Figure 10 - 4.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 4

 You are now ready to implement dynamic Google Maps in your plugin.

Integrating Google Maps ❘ 291

292 ❘ CHAPTER 10 THE SHORTCODE API

 Plugin Implementation

 Now you code the central piece of the plugin: the function to register the shortcode [googlemap]
and display the Google Map. The shortcode will be used like so:

[googlemap width=500 height=300 zoom=12]Elm Street, Springwood, Ohio[/googlemap]

 First, register the shortcode itself. You could elect to also register various similar shortcodes
pointing to the same callback, such as [googlemaps] , [google_map], and [google_maps] .

 < ?php

//add the [googlemap] shortcode support
add_shortcode(‘googlemap’, ‘boj_gmap_generate_map’);

 Now start to defi ne the callback function that can parse and process the shortcode attributes and
its content:

// The shortcode callback
function boj_gmap_generate_map($attr, $address) {

 // Set map default
 $defaults = array(
 ‘width’ = > ‘500’,
 ‘height’ = > ‘500’,
 ‘zoom’ = > 12,
);

 // Get map attributes (set to defaults if omitted)
 extract(shortcode_atts($defaults, $attr));

 This fi rst part sets an array of default values, merged with the actual attributes using the function
 shortcode_atts() that returns an array. The extract() call then imports variables from the array
so that for instance array(‘ size ’ = > 300) becomes $size = 300 .

 // get coordinates
 $coord = boj_gmap_get_coords($address);

 // Make sure we have coordinates, otherwise return empty string
 if(!$coord)
 return ‘’;

 What you ’ ve done here is geocode the address (either from fresh API data or the post metadata)
and, in case the geocoding fails (temporary connection problem between your server and Google ’ s,
for instance), return an empty string.

 // Output for the shortcode
 $output = ‘’;

 // populate $lat and $long variables
 extract($coord);

 Now that you have all the needed variables, you sanitize them for output. Some are to be included
in JavaScript strings and others used as HTML attributes, so you can use the appropriate escaping
function as described in Chapter 6:

 // Sanitize variables depending on the context they will be printed in
 $lat = esc_js($lat);
 $long = esc_js($long);
 $address = esc_js($address);
 $zoom = esc_js($zoom);
 $width = esc_attr($width);
 $height = esc_attr($height);

 Now you insert the JavaScript parts.

 Usually, you would insert the main script in the <head> of the document, but in this case this
would be counter - performant because the script would be inserted even if no post on the page
requires it.

 Instead, you insert it inline, as part as the shortcode return, while making sure it ’ s echoed only once
per page:

 // generate a unique map ID so we can have different maps on the same page
 $map_id = ‘boj_map_’.md5($address);

 // Add the Google Maps main javascript only once per page
 static $script_added = false;
 if($script_added == false) {
 $output .= ‘ < script type=”text/javascript”
 src=”http://maps.google.com/maps/api/js?sensor=false” > < /script > ’;
 $script_added = true;
 }

 Now you can insert the map-specifi c JavaScript. Each function and each map placeholder will be
uniquely named, using the $map_id variable previously generated, so you can have several maps on
the same page:

 // Add the map specific code
 $output .= < < < CODE
 < div id=”$map_id” > < /div >

 < script type=”text/javascript” >
 function generate_$map_id() {
 var latlng = new google.maps.LatLng($lat, $long);
 var options = {
 zoom: $zoom,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }

 var map = new google.maps.Map(
 document.getElementById(“$map_id”),

Integrating Google Maps ❘ 293

294 ❘ CHAPTER 10 THE SHORTCODE API

 options
);

 var legend = ‘ < div class=”map_legend” > < p > $address < /p > < /div > ’;

 var infowindow = new google.maps.InfoWindow({
 content: legend,
 });

 var marker = new google.maps.Marker({
 position: latlng,
 map: map,
 });

 google.maps.event.addListener(marker, ‘click’, function() {
 infowindow.open(map,marker);
 });

 }

 generate_$map_id();

 < /script >

 Append to the output some simple styling as per user - defi ned attributes:

 < style type”text/css” >
 .map_legend{
 width:200px;
 max-height:200px;
 min-height:100px;
 }
 #$map_id {
 width: {$width}px;
 height: {$height}px;
 }
 < /style >

CODE;

 And, of course, don ’ t forget to return the content of the shortcode replacement:

 return $output;
}

? >

 Code snippet plugin_boj_sc7.php

 Now your plugin is ready to go! Create a new post and, for instance, write the following shortcode:
 [googlemap width=450 height=300 zoom=14]108 Ocean Ave. Amityville, NY[/googlemap] .
Your post will look like Figure 10 - 5.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 MORE SHORTCODE QUICK IDEAS

 Shortcodes can easily add interesting and practical functions, and again, your imagination will be
the limit. You can for instance register shortcodes to display member - only content, display time -
 limited content, obfuscate email addresses, and more. In the following sections, you ’ ll look at a few
of the options.

 Display Member - Only Content

 The fi rst quick shortcode you will implement now is a neat way to display content to logged in users
only. For instance, its usage in posts would be as following:

Today’s Jedi pro-tip is:
[members]Use the force[/members]

 The code and function for such a shortcode is the following simple snippet:

 < ?php

add_shortcode(‘members’, ‘boj_sc8_loggedin’);

function boj_sc8_loggedin($attr, $content) {
 if(is_user_logged_in()) {
 return $content;
 } else {

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 10 - 5

More Shortcode Quick Ideas ❘ 295

296 ❘ CHAPTER 10 THE SHORTCODE API

 return “ < p > Members Eyes Only < /p > ”;
 }
}
? >

 Code snippet plugin_boj_sc8.php

 The result is that you enclose content between a [members] shortcode, and only readers who are
logged in can see it. For a more elaborated example on the same concept, refer back to Chapter 8,
 “ Users. ”

 Display Time - Limited Content

 Another simple yet valuable shortcode you will code will allow displaying time - limited content, such
as a promotional link that is valid only for 24 hours:

This promo link valid for 24 hours only:
[24hours] http://example.com/promo/ [/24hours]

 To implement this shortcode, you need the following snippet that will simply check the current time
against the time the post was published:

 < ?php

add_shortcode(‘24hours’, ‘boj_sc8_24hours’);

function boj_sc8_24hours($attr, $content) {
 $now = time();
 $post_time = get_the_date(‘U’);
 if(($now - $post_time) > 86400) {
 return ‘Offer has expired!’;
 } else {
 return $content;
 }
}
? >

 Code snippet plugin_boj_sc8.php

 If the current post has been published more than 86400 seconds (that is, 24 hours) ago, the text
enclosed in [24hours] tags won ’ t show.

 Obfuscate Email Addresses

 The next quick shortcode idea you will code is a practical way to convert a plain text email address
into a mailto: link that will be obfuscated (that is, less readable) to spam robots. In a post, you
would simply type:

Email me at [email]ozh@ozh.org[/email]

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 The shortcode function will make use of WordPress ’ function antispambot() , which converts
characters into HTML entities that spambots and email harvesters cannot easily read:

 < ?php

add_shortcode(‘email’, ‘boj_sc8_email’);

function boj_sc8_email($attr, $content) {
 if(is_email($content)) {
 $content = antispambot($content);
 return sprintf(‘ < a href=”mailto:%s” > %s < /a > ’, $content, $content); }
else {
 return ‘’;
 }
}
? >

 Code snippet plugin_boj_sc8.php

 The result is that you enclose email addresses between [email][/email] tags, and the shortcode
will obfuscate them. For instance, actual return for ‘ ozh@ozh.org’ is ‘o & #122; & #104; & #64; &
#111;z & #104; & #46;org’ .

 SUMMARY

 Shortcodes open the door to advanced, customizable, and dynamic content for end users who may
have no knowledge or will to write complicated HTML, JavaScript, CSS, or PHP.

 Using shortcodes, you can propose advanced macros to your clients, adding much value to your
work at little cost for development.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Summary ❘ 297

Extending Posts: Metadata,
Custom Post Types, and
Taxonomies

 WHAT ’ S IN THIS CHAPTER?

 Creating custom post types

 Using custom post types

 Adding and using post metadata

 Creating custom taxonomies

 Using custom taxonomies

 In WordPress, posts represent the content of the site. Content is typically the most important
aspect of having a web site. Taxonomies are a way to classify or categorize posts. Metadata is
additional information about individual posts. Each of these things can be brought together to
make any type of web site imaginable.

 Throughout this chapter, you work on building a single plugin that houses a user ’ s music
collection. Both the post types and taxonomies sections of this chapter contribute to the
overall plugin. Nearly every snippet of code provided within this chapter contributes to the
plugin and gives you a view of how the topics presented work together to manage content.

 One important thing to note about post types, post metadata, and taxonomies is that their
display is typically controlled by themes when on the frontend of the site, so plugin developers
don ’ t always have complete control over how this is handled. Of course, this depends on what
functionality the plugin is providing to the user. WordPress theme development is outside the
scope of this book, but learning how themes work within the WordPress environment can
make your plugin development skills stronger.

➤

➤

➤

➤

➤

 11

300 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 CREATING CUSTOM POST TYPES

 By default, WordPress has several predefi ned post types that enable users to create and manage the
content of their site. For the average blog user, these post types are all they ever need.

 Post — Blog posts typically presented in order from newest to oldest on the site

 Page — Top - level, hierarchical types of content such as About, Contact, and a myriad of
other pages

 Attachment — Media attached to other post types, such as images and videos for a post

 Revision — Revisions of other post types used as a backup system in case a user needs to
revert to an older copy

 Nav Menu Item — Items added to nav menus using WordPress ’ built - in menu management
system

 As WordPress becomes a more widely used system, other types of content are necessary for running
sites that don ’ t fi t within this predefi ned mold, which has traditionally catered to running blogs.
WordPress enables plugin developers to create other content types to handle many different scenarios.

 Post Type Possibilities

 When WordPress 3.0 was released, it opened the door to an endless number of possibilities. Users
could use the platform to run any type of web site. WordPress became a serious contender with
other, more robust content management systems (CMS). It would no longer need to be considered
simply a blogging platform.

 Today, you can use custom post types in WordPress to defi ne any type of content. Following is a
sample list of ideas that custom post types can handle:

 Music collection

 Product testimonials

 Online store

 Famous quotes

 Event calendar

 Photo portfolio

 Book database

 Image slideshows

 Videos

 Registering a Post Type

 WordPress makes it easy for developers to step in and create new post types with little code. Before
diving into the post type creation process, you need to understand the main function used for
creating post types and its arguments.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 register_post_type

 You use the register_post_type() function to create new post types for a site. It ’ s simple to use
and gives plugin developers a lot of fl exibility when creating post types.

 < ?php
register_post_type($post_type, $args);
? >

 The register_post_type() function returns the post type object and accepts two parameters.

 $post_type — The name of the post type. This should contain only alphanumeric
characters and underscores.

 $args — An array of arguments that defi ne the post type and how it should be handled
within WordPress.

 WordPress enables many different arguments for the $args parameter, each with its own unique
functionality that helps defi ne how your post type will work within the WordPress environment.
The following descriptions give you a basic understanding of each.

 public

 The argument that handles whether the post type should be shown on the frontend of the
site and backend. By default, this is set to false . This is a catchall argument that defi nes the
 show_ui , publicly_queryable , and exclude_from_search arguments if they are not set
individually.

 show_ui

 show_ui controls whether administration screens should be shown for the post type in the admin.
This defaults to the value set by the public argument.

 publicy_queryable

 publicy_queryable controls whether the post type should be publicly queryable from the frontend
of the site. This defaults to the value set by the public argument.

 exclude_from_search

 This argument enables you to exclude your post type ’ s posts from search results on the site. By
default, this is set to the value of the public argument.

 supports

 The supports argument enables plugins to defi ne what features their post types support. It accepts
an array of values that WordPress checks for internally. However, WordPress - supported features
aren ’ t the only features the post type can support. Other plugins/themes may optionally check for
support of certain features.

 WordPress checks for support of the following features. If your plugin does not set this argument, it
defaults to the title and editor arguments.

➤

➤

Creating Custom Post Types ❘ 301

302 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 title — Enables users to enter a post title.

 editor — Displays a content editor on the post editing screen with a media uploader.

 author — Offers a select box to choose the author of the post.

 thumbnail — Presents a featured image box for the post.

 excerpt — Creates an excerpt editor on the post editing screen.

 comments — Shows whether comments will be enabled for posts of this type.

 trackbacks — Shows whether trackbacks and pingbacks will be enabled for posts of this type.

 custom - fields — Shows the custom fi eld editing area on the post edit screen.

 page - attributes — Displays the attributes box for choosing the post order. The
 hierarchical argument must be set to true for this to work.

 revisions — Saves revisions of posts of this type.

 labels

 The labels argument is an array of text strings shown in various places in the admin for the post
type. See the “ Setting Post Type Labels ” section for details on each label.

 capability_type

 This argument enables you to add a custom set of capabilities. It acts as a catchall term from which
new capabilities are created. The capabilities argument can overwrite individual capabilities set
by this argument. By default, its value is post .

 capabilities

 The capabilities argument is an array of custom capabilities required for editing, deleting,
reading, and publishing posts of this type. See the “ Using Custom Capabilities ” section for details
on each capability.

 hierarchical

 The hierarchical argument enables you to set the posts of this type to be ordered hierarchically
(such as the WordPress “ page ” post type) or nonhierarchically (such as the WordPress “ post ” post
type). If set to true , posts can be arranged in a hierarchical, tree - like structure. By default, the
argument is set to false .

 has_archive

 The has_archive argument creates an archive page for the post type, much like the WordPress
posts page that displays the site ’ s latest blog posts. How these posts are displayed is dependent
on the theme the user has installed. By default, this argument is set to false . If it is set to true ,
WordPress will create the archive.

 query_var

 This argument is the name of the query variable for posts of this type. For example, you would use
this when querying posts of this type from the database.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 rewrite

 The rewrite argument creates unique permalinks for this post type. Valid values for it are true ,
 false , or an array. If set to true , it will create permalinks from the query_var argument and the
individual post title. If set to false , no permalink structure will be created.

 If using an array, you may set several values:

 with_front — Whether to prefi x permalinks with the permalink front base. By default,
this is set to true .

 slug — A unique string to use before the post title in the permalink. This defaults to the
 query_var argument.

 feeds — Whether the post type should have feeds for its posts. The has_archive argument
needs to be set to true for this to take effect. Its value will default to the has_archive value
if neither is set.

 pages — Whether post type archive pages should be paginated. By default, it is set to true .
This feature is only useful if the has_archive argument is also set to true .

 taxonomies

 This argument enables you to add support for preexisting taxonomies to the post type. It accepts an
array of taxonomy names as its value. See the “ Attaching Existing Taxonomies ” section for more
details on how to do this.

 menu_position

 menu_position enables you to set the position in which the administration menu item shows in the
admin menu. By default, new post types are added after the Comments menu item.

 menu_icon

 This argument accepts an image fi lename to use as the menu icon in the admin menu.

 show_in_nav_menus

 If you want to allow posts of this type to appear in WordPress nav menus, set this to true ;
otherwise, set it to false . By default, it is set to the value of the public argument.

 can_export

 WordPress has an import/export feature that enables users to import or export posts. This
argument enables you to set whether users can export posts of this type. It is set to true by default.

 register_meta_box_cb

 Plugins can add meta boxes to the edit post screen. This argument enables plugins to set a custom
callback function for adding custom meta boxes within the add_meta_box() function for this post
type (see Chapter 4, “ Integrating in WordPress, ” for details on using meta boxes).

➤

➤

➤

➤

Creating Custom Post Types ❘ 303

304 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 permalink_epmask

 This is the rewrite endpoint bitmask used for posts of this type. By default, this is set to
 EP_PERMALINK .

 Registering the Music Album Post Type

 Now that you ’ ve reviewed the arguments of the register_post_type() function, it ’ s time to create
your fi rst post type, which is the theme of this chapter.

 The fi rst step is to create a new plugin fi le called boj - music - collection - post - types.php to hold
your new plugin called “ Music Collection Post Types. ” Using the following code, you register a post
type called music_album .

 < ?php
/*
Plugin Name: Music Collection Post Types
Plugin URI: http://example.com
Description: Creates the music_album post type.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Set up the post types. */
add_action(‘init’, ‘boj_music_collection_register_post_types’);

/* Registers post types. */
function boj_music_collection_register_post_types() {

 /* Set up the arguments for the ‘music_album’ post type. */
 $album_args = array(
 ‘public’ = > true,
 ‘query_var’ = > ‘music_album’,
 ‘rewrite’ = > array(
 ‘slug’ = > ‘music/albums’,
 ‘with_front’ = > false,
),
 ‘supports’ = > array(
 ‘title’,
 ‘thumbnail’
),
 ‘labels’ = > array(
 ‘name’ = > ‘Albums’,
 ‘singular_name’ = > ‘Album’,
 ‘add_new’ = > ‘Add New Album’,
 ‘add_new_item’ = > ‘Add New Album’,
 ‘edit_item’ = > ‘Edit Album’,
 ‘new_item’ = > ‘New Album’,
 ‘view_item’ = > ‘View Album’,
 ‘search_items’ = > ‘Search Albums’,
 ‘not_found’ = > ‘No Albums Found’,

 ‘not_found_in_trash’ = > ‘No Albums Found In Trash’
),
);

 /* Register the music album post type. */
 register_post_type(‘music_album’, $album_args);
}

? >

 Code snippet boj - music - collection - post - types.php

 This creates a new top - level menu item in the WordPress admin called Albums, as shown in
Figure 11 - 1. The new menu item also has two submenu items: Albums and Add New Album. The
former links to a page that lists the albums (after they ’ re created) in the order that they ’ ve been
published. The latter adds a new page for publishing new albums.

 FIGURE 11 - 1

 Setting Post Type Labels

 In the WordPress admin, several text strings are shown for the post type. Each piece of text typically
represents a link, button, or extra information about the post. By default, hierarchical post types have
the term “ page ” in these strings, and nonhierarchical post types have the term “ post ” in them.

 These strings are placeholders for your plugin to change depending on the post type it creates. For
example, you wouldn ’ t want to show View Post when you intend to display View Album. By setting
these strings, you can create a much nicer experience for your plugin users.

 The function your plugin uses to create post types must be added to the init
action hook. Otherwise, your post type won ’ t be properly registered.

Creating Custom Post Types ❘ 305

306 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 When you set up your initial music album post type, you set the labels array for the $args
parameter with multiple values as shown in this excerpt from the code in the previous section:

 < ?php

‘labels’ = > array(
 ‘name’ = > ‘Albums’,
 ‘singular_name’ = > ‘Album’,
 ‘add_new’ = > ‘Add New Album’,
 ‘add_new_item’ = > ‘Add New Album’,
 ‘edit_item’ = > ‘Edit Album’,
 ‘new_item’ = > ‘New Album’,
 ‘view_item’ = > ‘View Album’,
 ‘search_items’ = > ‘Search Albums’,
 ‘not_found’ = > ‘No Albums Found’,
 ‘not_found_in_trash’ = > ‘No Albums Found In Trash’
),

? >

 Each of these labels is shown in some way within the admin to make for a better user experience:

 name — The plural name of the post type, which is sometimes used in the WordPress admin
and by other plugins and themes.

 singular_name — The singular version of the name of the post type. It is also sometimes
used in the WordPress admin and by other plugins and themes.

 add_new — The label used for the add new submenu item. The text defaults to Add New.

 add_new_item — Used as the button text on the main post listing page to add a new post.
By default, the text is Add New Post/Page.

 edit_item — Used as the text for editing an individual post. Defaults to Edit Post/Page.

 new_item — Text for creating a new post. By default, it is set to New Post/Page.

 view_item — The text for viewing an individual post. It defaults to View Post/Page.

 search_items — Text displayed for searching the posts of this type. It defaults to Search
Posts/Pages.

 not_found — The text shown when no posts were found in a search. By default, it displays
No Posts/Pages Found.

 not_found_in_trash — The text shown when no posts are in the trash. Defaults to No
Posts/Pages Found in Trash.

 parent_item_colon — Text shown when displaying a post ’ s parent. This text is used only
with hierarchical post types and displays Parent Page: by default.

 Using Custom Capabilities

 On some WordPress installations, there are several users, each with their own tasks to perform
on the site. You need to keep this in mind when developing custom post types because site

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

administrators often assign different user roles to editing and publishing content to specifi c sections
of the site. Chapter 8, “ Users, ” covers how to manipulate roles and capabilities. However, when
registering custom post types, you ’ ll likely want to set up custom capabilities for handling content.

 The capability_type and capabilities arguments for the $args array in the register_post_
type() function enable you to control this. capability_type gives you global control over the
capabilities. The capabilities argument is an array that gives you specifi c control over
individual capabilities.

 Suppose you want to create custom capabilities for permission to these types of posts. The fi rst
option is to simply defi ne the capability_type argument, which can automatically set each option
in the capabilities array.

 < ?php

‘capability_type’ = > ‘album’,

? >

 This can create several default capabilities for editing, reading, deleting, and publishing posts of
this type:

 edit_album

 edit_albums

 edit_others_albums

 publish_albums

 read_album

 read_private_albums

 delete_album

 If you want full control over how each of these capabilities is named, you would use the
 capabilities argument instead of the capability_type argument as shown in the following code.

 < ?php

‘capabilities’ = > array(
 ‘edit_post’ = > ‘edit_album’,
 ‘edit_posts’ = > ‘edit_albums’,
 ‘edit_others_posts’ = > ‘edit_others_albums’,
 ‘publish_posts’ = > ‘publish_albums’,
 ‘read_post’ = > ‘read_album’,
 ‘read_private_posts’ = > ‘read_private_albums’,
 ‘delete_post’ = > ‘delete_album’,
),

? >

➤

➤

➤

➤

➤

➤

➤

Creating Custom Post Types ❘ 307

308 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 Each capability grants permission for a specifi c task in the content publishing process for posts of
this type:

 edit_post — The meta capability used to determine if a user can edit a specifi c post.

 edit_posts — A capability that grants access to creating and editing posts but does not
enable publishing.

 edit_others_posts — Gives permission to edit posts created by other users.

 publish_posts — Grants publishing rights to the user to publish any posts of this type.

 read_post — The meta capability that determines if a user can read a specifi c post.

 read_private_posts — Enables the user to read privately published posts.

 delete_post — The meta capability used to determine if a user can delete a specifi c post.

 You don ’ t have to stick to a specifi c formula with custom post types though. Your plugin
can mix these up. It can set the same capability for multiple capability options. Or it can set the
same capability for each option. For example, you can set each of these capabilities to manage_
music_collection if you know only certain users will have permission to manage all music
album posts.

 Another capability you can set is do_not_allow if you don ’ t want to allow access to a specifi c task.
Generally, you wouldn ’ t use this, but some situations may call for it, such as setting edit_others_
posts to do_not_allow so that no user can edit posts created by other users.

 Attaching Existing Taxonomies

 If your post type can make use of existing taxonomies, you can easily set this in the taxonomies
argument within the $args array of register_post_type() . For example, WordPress has two
general taxonomies that work great for other post types: category and post_tag . However, you ’ re
not limited to taxonomies created by WordPress. Your post type can use taxonomies created by
other plugins and themes as well.

 Imagine you wanted to add post tags to your music album post type. You would set this as shown in
the following code:

 < ?php

‘taxonomies’ = > array(‘post_tag’),

? >

 By adding this to your $args array for register_post_type() , a new Post Tags submenu item will
be added below your Albums menu item in the admin, as shown in Figure 11 - 2.

➤

➤

➤

➤

➤

➤

➤

 USING CUSTOM POST TYPES

 Now that you ’ ve learned how to create custom post types, you need to use them. How they ’ ll
be used will be highly dependent on what functionality your custom post type should serve, but
getting the content created by posts of this type will nearly always rely on WordPress ’ post - related
functions.

 To fi nd functions for getting post information, you can look in one of two fi les within the
WordPress install.

 wp - includes/post.php — Post functions and post utility functions

 wp - includes/post - template.php — Template functions for displaying post content

 Each function serves a specifi c task within WordPress. By studying and using the functions within
these fi les, you can start grasping how the post functions work.

 Generally, it ’ s the job of a WordPress theme to display posts on the frontend of the site. However,
not all custom post types need to be displayed in the same manner. It depends on what functionality
the custom post type is used for. To use custom post types, you need to learn a few functions
typically considered theme territory.

 Creating a Custom Post Type Loop

 When you want to grab the content of a post or multiple posts, you can query these posts from the
database by initializing a new WP_Query object and looping through each of the posts retrieved.
Within this loop, you would use post template functions for outputting specifi c parts of the
individual post objects.

 Suppose you want to create a list of all album titles in alphabetical order with links to the individual
albums for your music collection plugin. You ’ re creating something called The Loop, where you use
a PHP while loop to iterate through each post.

➤

➤

 FIGURE 11 - 2

Using Custom Post Types ❘ 309

310 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 The following code is an example of how to display The Loop using a shortcode that users can
place within a shortcode - aware area, such as the page editor (see Chapter 10, “ The Shortcode
API ”). The user only needs to place [music_albums] within this area. You can add the following
code to your “ Music Collection Post Types ” plugin from earlier in this chapter to provide this
functionality.

 < ?php

add_action(‘init’, ‘boj_music_album_register_shortcodes’);

function boj_music_album_register_shortcodes() {

 /* Register the [music_albums] shortcode. */
 add_shortcode(‘music_albums’, ‘boj_music_albums_shortcode’);
}

function boj_music_albums_shortcode() {

 /* Query albums from the database. */
 $loop = new WP_Query(
 array(
 ‘post_type’ = > ‘music_album’,
 ‘orderby’ = > ‘title’,
 ‘order’ = > ‘ASC’,
 ‘posts_per_page’ = > -1,
)
);

 /* Check if any albums were returned. */
 if ($loop- > have_posts()) {

 /* Open an unordered list. */
 $output = ‘ < ul class=”music-collection” > ’;

 /* Loop through the albums (The Loop). */
 while ($loop- > have_posts()) {

 $loop- > the_post();

 /* Display the album title. */
 $output .= the_title(
 ‘ < li > < a href=”’ . get_permalink() . ‘” > ’,
 ‘ < /a > < /li > ’,
 false
);

 }

 /* Close the unordered list. */
 $output .= ‘ < /ul > ’;
 }

 /* If no albums were found. */

 else {
 $output = ‘ < p > No albums have been published.’;
 }

 /* Return the music albums list. */
 return $output;
}

? >

 Code snippet boj - post - type - loop.php

 This custom loop can output a list of items similar to the list shown in
Figure 11 - 3 if any new albums have been published.

 The most important part of the previous code is the post_type
argument in the array passed to WP_Query . It must be set to the name of
your post type. In this case, you used music_album for this value because
it is your post type ’ s name.

 The only limit to how you can display posts of custom post types is your
PHP development skills. You can use The Loop to display posts in any
manner you want. You can display them in widgets (refer to Chapter 4)
or create a shortcode as you did in the previous code (see Chapter 10, “ The Shortcode API ”). It ’ s
entirely dependent on what you want your plugin to do.

 Retrieving Custom Post Type Content

 WordPress has several functions for retrieving content of posts. This section focuses on the most
common functions for retrieving post data; however, other functions exist for getting other data
about the post. You should always use these functions within The Loop, which is what you created
in the previous section. Typically, WordPress themes use these functions to display content on the
frontend of the site; however, your plugin may need them to display posts.

 the_title

 This function displays the title of the post. It displays something only if a title is given for the post.
For example, if your plugin doesn ’ t set title in the supports argument for register_post_
type() , you wouldn ’ t use this function to display a title. It accepts three parameters.

 < ?php
the_title($before, $after, $echo);
? >

 $before — Content to display before the post title. This defaults to an empty string.

 $after — Content to display after the post title. This defaults to an empty string.

 $echo — Whether to print the title to the screen or return it for use in PHP code. By default,
it is set to true .

➤

➤

➤

 FIGURE 11 - 3

Using Custom Post Types ❘ 311

312 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 the_content

 This function enables you to display the content written in the post editor by the user. For it to
display any content, post content must be written. Also, the editor value needs to be added to the
 supports array for $args in register_post_type() for users to add content. If this is not set, you
probably won ’ t need this function.

 < ?php
the_content($more_link_text, $stripteaser);
? >

 $more_link_text — Text to show a continue reading link if a user sets the < ! - - more - - >
quick tag in the post editor.

 $stripteaser — Whether to display the content written before the < ! - - more - - > quick tag
is used. By default, this is set to false .

 the_excerpt

 This function shows an excerpt of the post content. If your post type sets excerpt in the supports
argument for the $args parameter in register_post_type() , it can create an excerpt box that
users can use to write custom excerpts. If this is not set or the user doesn ’ t write a custom excerpt,
one will be auto - created from the post content.

 < ?php
the_excerpt();
? >

 the_permalink

 This function displays the permanent link (the URL) to the given post. It links to the singular view
of the post. You would use it as the href attribute within HTML hyperlinks.

 < ?php
the_permalink();
? >

 Checking if a Post Type Exists

 There may be some scenarios in which you need to check if a post type exists before running any
particular code. For example, you may want to check if the music_album post type exists before
registering your own music_album post type. Or you may want to offer integration with other
plugins ’ post types with your plugin.

 post_type_exists

 The post_type_exists() function checks whether the post type has been registered with
WordPress. It accepts a single parameter of $post_type , which should be a string representing the
post type name. It returns true if the post type exists or false if it doesn ’ t exist.

➤

➤

 < ?php
post_type_exists($post_type);
? >

 Suppose you wanted to display a message depending on whether the music_album post type has
been registered. Using the following code, you can perform this task.

 < ?php

/* If music_album post type is registered. */
if (post_type_exists(‘music_album’)) {

 echo ‘The music_album post type has been registered.’;
}

/* If the music_album post type is not registered. */
else {

 echo ‘The music_album post type has not been registered.’;
}

? >

 POST METADATA

 In WordPress, posts can have additional information attached to them. This information is called
post metadata and is saved in the $wpdb - > postmeta table in the database.

 Post metadata is often referred to as Custom Fields in WordPress terminology. This is more of a
term used for an easier user experience so that users are not scared off by developer terms such as
metadata. By default, WordPress adds a meta box on the post/page editor screens for adding custom
fi elds, as shown in Figure 11 - 4.

 For custom post types to use this feature on the post - editing screen, the custom - fields value
must be set for the supports argument when using register_post_type() as described in the
 “ Registering a Post Type ” section.

 FIGURE 11 - 4

Post Metadata ❘ 313

314 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 The true power of post metadata isn ’ t in enabling users to manually create and input keys and
values in the Custom Fields section on the post editor screen. Plugins can create, update, and delete
these values without the user ever knowing that they ’ re manipulating metadata.

 To hide this knowledge from the end user, you would create custom meta boxes for the post screen.
(For more information on creating custom meta boxes, refer to Chapter 4.) This chapter focuses on
the functions you would use to manipulate metadata.

 Throughout this section on post metadata, you create, retrieve, update, and delete a user ’ s favorite
song(s) from a music album (your custom post type created in the post type section).

 Adding Post Metadata

 WordPress provides a simple function for adding new post metadata. Use this to update a user ’ s
favorite song. When adding new metadata, it appears in the Custom Fields select box, as shown in
Figure 11 - 4.

 add_post_meta

 You use the add_post_meta() function to add new post metadata to a specifi c post, which accepts
four parameters.

 < ?php
add_post_meta($post_id, $meta_key, $meta_value, $unique);
? >

 $post_id — The ID of the post to add metadata to.

 $meta_key — The metadata key (name) to add meta value(s) to.

 $meta_value — The value attributed to the meta key. Multiple meta values may be added
to a single key.

 $unique — Whether the meta value provided should be the only meta value. If true , there
will be only a single meta value. If false , multiple meta values can be added. By default,
this parameter is set to false .

 Now that you know how the parameters work for add_post_meta() , you can insert some metadata
to a specifi c post. Suppose you have a post (album) with the ID of 100 and the user ’ s favorite song
from the album is “ If Code Could Talk. ” You would use the following code to update this value.

 < ?php

add_post_meta(100, ‘favorite_song’, ‘If Code Could Talk’, true);

? >

 Setting the $unique parameter to true allows for a single value. If you want to allow for multiple
values for the favorite_song meta key, you can set it to false . Suppose you want to add another
song called “ WordPress Makes Me Happy. ” You can set both values using two instances of
 add_post_meta() .

➤

➤

➤

➤

 < ?php

add_post_meta(100, ‘favorite_song’, ‘If Code Could Talk’, false);
add_post_meta(100, ‘favorite_song’, ‘WordPress Makes Me Happy’, false);

? >

 To hide meta keys from appearing in the Custom Fields select box on the post -
 editing screen, prefi x the meta key with an underscore like _favorite_song .
This makes sure users never see it and is common practice when creating custom
meta boxes.

 Retrieving Post Metadata

 WordPress makes it easy to get post metadata for display or to use in other PHP functions. A good
place to use this functionality is within The Loop, which you learned how to use in the “ Using
Custom Post Types ” section.

 get_post_meta

 The get_post_meta() function retrieves metadata for a specifi c post and accepts three parameters.

 < ?php
get_post_meta($post_id, $meta_key, $single);
? >

 $post_id — The ID of the post to get the metadata for.

 $meta_key — The meta key name to retrieve meta value(s) for.

 $single — Whether to return a single meta value (true) or return an array of values
(false). By default, this parameter is set to false .

 Suppose you want to get a single meta value for the favorite_song meta key. You can use the
following code to display the message “ Favorite song from this album: If Code Could Talk. ”

 < ?php

/* Get a single favorite song by the favorite_song meta key. */
$favorite_song = get_post_meta(100, ‘favorite_song’, true);

/* Display the meta value. */
echo ‘Favorite song from this album: ‘ . $favorite_song;

? >

 You could also display each of the meta values for the favorite_song meta key. Imagine that you
want to create a list of all the favorite songs.

➤

➤

➤

Post Metadata ❘ 315

316 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 < ?php

/* Get all meta values for the favorite_song meta key. */
$favorite_songs = get_post_meta(100, ‘favorite_song’, false);

/* Open an unordered list. */
echo ‘ < ul class=”favorite-songs” > ’;

/* Loop through each meta value. */
foreach ($favorite_songs as $song) {

 /* Display the individual meta value. */
 echo ‘ < li > ’ . $song . ‘ < /li > ’;
}

/* Close the unordered list. */
echo ‘ < /ul > ’;

? >

 Updating Post Metadata

 WordPress provides the ability to update post metadata as well. You can use this functionality when
you need to update a preexisting meta value or completely overwrite all meta values for a given meta
key. You can also use it to add a meta key and values if none are present.

 update_post_meta

 The update_post_meta() function exists to update previous metadata for a specifi c post or to add
new metadata if it is not already set. This function accepts four parameters.

 < ?php
update_post_meta($post_id, $meta_key, $meta_value, $prev_value);
? >

 $post_id — The post ID to update meta value(s) for.

 $meta_key — The meta key to update meta value(s) for.

 $meta_value — The new meta value to add to the meta key.

 $prev_value — The previous meta value to overwrite. If this parameter is not set, all meta
values will be overwritten in favor of the $meta_value parameter.

 If you want to update an existing meta value, use the update_post_meta() function. For
example, if you want to change the favorite_song value of “ If Code Could Talk ” to a new
value, “ WP Blues, ” you can use the following code to do this.

 < ?php

update_post_meta(100, ‘favorite_song’, ‘WP Blues’, ‘If Code Could Talk’);

? >

➤

➤

➤

➤

 Alternatively, you can overwrite all meta values for the favorite_song meta key by not adding the
 $prev_value parameter. In the next example, you overwrite all previous values with the value of
WP Blues.

 < ?php

update_post_meta(100, ‘favorite_song’, ‘WP Blues’);

? >

 Deleting Post Metadata

 There will be scenarios in which you need to delete post metadata completely or to delete a single
meta value from a given meta key. WordPress makes this process simple for developers.

 delete_post_meta

 The delete_post_meta() function enables you to delete metadata for a specifi c post, and it accepts
three parameters.

 < ?php
delete_post_meta($post_id, $meta_key, $meta_value);
? >

 $post_id — The post ID to delete metadata for.

 $meta_key — The meta key to delete or the meta key to delete a meta value for.

 $meta_value — The meta value to delete for the given meta key. If this parameter is not set,
all meta values for the meta key will be deleted.

 If you wanted to delete a single value for the favorite_song meta key, you need to make sure the
 $meta_value parameter is set. In this case, you delete the “ If Code Could Talk ” meta value by
setting it as the $meta_value parameter.

 < ?php

delete_post_meta(100, ‘favorite_song’, ‘If Code Could Talk’);

? >

 The preceding usage of delete_post_meta() deletes a single meta value. If you want to delete
all the meta values for the favorite_song meta key for this post, leave the $meta_value parameter
empty.

 < ?php

delete_post_meta(100, ‘favorite_song’);

? >

➤

➤

➤

Post Metadata ❘ 317

318 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 CREATING CUSTOM TAXONOMIES

 Taxonomies are a way to group or categorize objects in WordPress, such as posts, links, and users.
For the purposes of this chapter, focus on creating taxonomies for posts.

 WordPress ships with several taxonomies by default:

 Category — A hierarchical taxonomy used to categorize blog posts

 Post Tag — A nonhierarchical taxonomy used to tag blog posts

 Link Category — A nonhierarchical taxonomy used to categorize links

 Nav Menu — A nonhierarchical taxonomy that represents navigation menus and groups nav
menu items

 The greatest power of custom taxonomies is creating them for custom post types. Creating a
custom post type almost makes it necessary to include additional organizational methods for the
individual posts of that type.

 Understanding Taxonomies

 To understand how taxonomies work, you must understand that an individual taxonomy is a group
of terms. Each term of the taxonomy would defi ne how posts fi t into that taxonomy.

 The post types section covered how to create a new post type: music album. Users would use this
post type to organize their collection of music albums. Each post would be an album. Users might
want a way to further organize their music collection by grouping similar albums within given
taxonomies. Some possible taxonomies for music albums follow:

 Artist (WP Hot Boys, Code Rockstars)

 Genre (Rock, Blues, R & B)

 Format (CD, vinyl, cassette)

 Studio (WP Productions, Code Is Music)

 Each of these taxonomies would enable users to label their music albums with information that
further defi nes the content. Essentially, taxonomies provide clearer organization and defi nition for
content.

 This section focuses on creating the Artist and Genre taxonomies for the music album post type you
created within the post types section.

➤

➤

➤

➤

➤

➤

➤

➤

 This chapter focuses solely on creating taxonomies for post types because this
will be the scenario they ’ ll be used for in most cases. However, you can add
taxonomies to any object type in WordPress, such as links and users.

 Registering a Custom Taxonomy

 Registering a taxonomy requires the use of only a single function provided by WordPress:
 register_taxonomy() . This function enables you to register a new taxonomy and set it up by using
custom arguments to defi ne how the taxonomy should be handled within WordPress.

 register_taxonomy

 In your plugin fi le, you use the register_taxonomy() function to create a new taxonomy. It accepts
three parameters.

 < ?php
register_taxonomy($taxonomy, $object_type, $args);
? >

 $taxonomy — The name of your plugin ’ s taxonomy. This should contain only alphanumeric
characters and underscores.

 $object_type — A single object or an array of objects to add the taxonomy to.

 $args — An array of arguments that defi nes how WordPress should handle your taxonomy.

 The $args parameter is what enables you to customize your taxonomies. The following descriptions
of each argument can give you an understanding of how you can set up taxonomies to your needs.

 public

 The public argument determines whether the taxonomy should be publicly queryable from the
frontend of the site. By default, this argument is set to true .

 show_ui

 This argument decides if a WordPress - generated user interface should be added in the admin for
managing the taxonomy. This argument is set to the value of the public argument by default.

 hierarchical

 The hierarchical argument determines if the taxonomy’s terms should be in a hierarchical or
nonhierarchical (fl at) format. If this argument is set to true , terms may have parent terms within
the taxonomy. By default, the argument is set to false .

 query_var

 This argument is the name of the query variable for terms of this taxonomy. For example, you
would use this when querying posts for a specifi c term of this taxonomy from the database. You can
set it to a custom string, true , or false . Set it to true to use the taxonomy name as the argument,
or set it to false to prevent queries. By default, this argument is set to the taxonomy name.

 rewrite

 The rewrite argument creates permalinks (URLs) for the term archive pages for the taxonomy. It
accepts one of three values: true , false , or an array. If set to true , it creates permalinks from the
taxonomy name and the individual term slug. If set to false , no permalink structure will be created.

➤

➤

➤

Creating Custom Taxonomies ❘ 319

320 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 If your plugin uses an array, you can set a few arguments:

 with_front — Whether to prefi x permalinks with the permalink front base. By default,
this is set to true .

 slug — Unique string to use before the term slug in the permalink. This is set to the
taxonomy name by default.

 hierarchical — Whether terms with parents should show the parent terms in their
permalink structure. The taxonomy must be hierarchical for this to work. By default, this is
set to false .

 update_count_callback

 You may set a custom function for this argument to be called when the term count is updated,
which generally happens when a post is saved.

 show_tagcloud

 This argument determines whether the taxonomy can be used in the WordPress tag cloud widget.
If set to true , the taxonomy ’ s terms can be shown with the widget. If set to false , the terms cannot
be shown. The argument defaults to the value of the show_ui argument.

 show_in_nav_menus

 The show_in_nav_menus argument decides whether the terms of the taxonomy can be added to
user - created nav menus in the admin. By default, this argument is set to the value of the public
argument.

 labels

 When creating your taxonomy, you need to provide the best user experience possible. The labels
argument enables you to set text strings that are generally used in the admin to provide information
about the taxonomy or its terms. If you do not set these labels, WordPress automatically creates
labels with the term Tags for nonhierarchical taxonomies and the term Categories for hierarchical
taxonomies.

 The labels argument is an array of text strings. Following is a description of each key in the array.

 name — The plural name of the taxonomy.

 singular_name — The singular name of the taxonomy.

 search_items — The text shown for searching for terms within the taxonomy.

 popular_items — Text displayed when showing a tag cloud of popular terms of the
taxonomy. This text isn ’ t used for hierarchical taxonomies.

 all_items — Text shown for a link to view all terms of the taxonomy.

 parent_item — Text used to show a parent term. This isn ’ t used for nonhierarchical
taxonomies.

 parent_item_colon — Text displayed when showing a parent term, followed by a colon at
the end of the text. This label isn ’ t used for nonhierarchical taxonomies.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 edit_item — Text shown when editing a term.

 update_item — Text shown to update a term.

 add_new_item — Text displayed to create a new term.

 new_item_name — Text shown to create a new term name.

 separate_items_with_commas — A sentence letting users to know to separate individual
terms with commas. This label isn ’ t used with hierarchical taxonomies.

 add_or_remove_items — A sentence telling users to add or remove terms when JavaScript
in their browser is disabled. This text isn ’ t used with hierarchical taxonomies.

 choose_from_the_most_used — A sentence enabling users to choose from the most - used
terms of a taxonomy. This label isn ’ t used with hierarchical taxonomies.

 capabilities

 When developing your custom taxonomy, you need to keep in mind what users should have
permission to manage, edit, delete, and assign terms of the taxonomy. The capabilities argument is
an array of capabilities that you set to control this. Chapter 8 covers capabilities in detail.

 manage_terms — Grants users the ability to manage terms of the taxonomy. This enables
them to use the category - to - tag converter and to view the taxonomy ’ s terms in the
taxonomy page in the admin. Defaults to manage_categories .

 edit_terms — Gives users the ability to edit terms of the taxonomy. Defaults to
 manage_categories .

 delete_terms — Permission to delete terms from the taxonomy. Defaults to
 manage_categories .

 assign_terms — Grants the ability to assign terms from the taxonomy to a post. Defaults
to edit_posts .

 Registering the Genre and Artist Taxonomies

 Now that you ’ ve reviewed the register_taxonomy() parameters and arguments in detail, it ’ s time
to use that knowledge to create new taxonomies.

 In the next example, you create two new taxonomies, album_artist and album_genre , for the
 “ music album ” post type that you created in the fi rst part of this chapter. The artist taxonomy is
nonhierarchical and the genre taxonomy is hierarchical.

 < ?php

/* Set up the taxonomies. */
add_action(‘init’, ‘boj_music_collection_register_taxonomies’);

/* Registers taxonomies. */
function boj_music_collection_register_taxonomies() {

 /* Set up the artist taxonomy arguments. */
 $artist_args = array(

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Creating Custom Taxonomies ❘ 321

322 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 ‘hierarchical’ = > false,
 ‘query_var’ = > ‘album_artist’,
 ‘show_tagcloud’ = > true,
 ‘rewrite’ = > array(
 ‘slug’ = > ‘music/artists’,
 ‘with_front’ = > false
),
 ‘labels’ = > array(
 ‘name’ = > ‘Artists’,
 ‘singular_name’ = > ‘Artist’,
 ‘edit_item’ = > ‘Edit Artist’,
 ‘update_item’ = > ‘Update Artist’,
 ‘add_new_item’ = > ‘Add New Artist’,
 ‘new_item_name’ = > ‘New Artist Name’,
 ‘all_items’ = > ‘All Artists’,
 ‘search_items’ = > ‘Search Artists’,
 ‘popular_items’ = > ‘Popular Artists’,
 ‘separate_items_with_commas’ = > ‘Separate artists with commas’,
 ‘add_or_remove_items’ = > ‘Add or remove artists’,
 ‘choose_from_most_used’ = > ‘Choose from the most popular artists’,
),
);

 /* Set up the genre taxonomy arguments. */
 $genre_args = array(
 ‘hierarchical’ = > true,
 ‘query_var’ = > ‘album_genre’,
 ‘show_tagcloud’ = > true,
 ‘rewrite’ = > array(
 ‘slug’ = > ‘music/genres’,
 ‘with_front’ = > false
),
 ‘labels’ = > array(
 ‘name’ = > ‘Genres’,
 ‘singular_name’ = > ‘Genre’,
 ‘edit_item’ = > ‘Edit Genre’,
 ‘update_item’ = > ‘Update Genre’,
 ‘add_new_item’ = > ‘Add New Genre’,
 ‘new_item_name’ = > ‘New Genre Name’,
 ‘all_items’ = > ‘All Genres’,
 ‘search_items’ = > ‘Search Genres’,
 ‘parent_item’ = > ‘Parent Genre’,
 ‘parent_item_colon’ = > ‘Parent Genre:’,
),
);

 /* Register the album artist taxonomy. */
 register_taxonomy(‘album_artist’, array(‘music_album’), $artist_args);

 /* Register the album genre taxonomy. */
 register_taxonomy(‘album_genre’, array(‘music_album’), $genre_args);
}

? >

 Code snippet boj - music - collection - taxonomies.php

 After you add the preceding code, you ’ ll be presented with two new submenu items under the
Albums menu item in the admin, labeled Artists and Genres. You also have two new meta boxes for
assigning artists and genres to individual albums, as shown in Figure 11 - 5.

 FIGURE 11 - 5

 Assigning a Taxonomy to a Post Type

 Sometimes, you may need to assign taxonomy to a post type when your plugin does not create
the taxonomy or the post type. If your plugin creates the taxonomy, you would do this with the
 register_taxonomy() function, or if your plugin needs to add a preexisting taxonomy, it would set
this in the register_post_type() function as you ’ ve seen earlier. However, you may not always
have the benefi t of using those functions when you need to assign taxonomy to a post type.

 register_taxonomy_for_object_type

 This function enables you to set taxonomy to any object type, which will typically be a specifi c post
type. It accepts two parameters and returns true if successful and false if not.

 < ?php
register_taxonomy_for_object_type($taxonomy, $object_type);
? >

 Your function for registering new taxonomies must be added to the init action
hook for the taxonomies to be properly registered.

Creating Custom Taxonomies ❘ 323

324 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 $taxonomy — The name of the taxonomy your plugin will add to the post type.

 $object_type — The name of the object type to add the taxonomy to. Most of the time,
this will be a post type. This value can be a single object type or an array of object types.

 One example of setting a specifi c taxonomy to a post type is giving the “ page ” post type the “ post
tag ” taxonomy, which is usually used for the “ post ” post type. Using the following code, you can
add this taxonomy to it.

 < ?php

/* Adds the post_tag taxonomy to the page post type. */
register_taxonomy_for_object_type(‘post_tag’, ‘page’);

? >

 USING CUSTOM TAXONOMIES

 As with custom post types, taxonomies are most often used within WordPress theme template fi les.
However, there are scenarios where your plugin needs to use taxonomy functions for displaying
information.

 Retrieving a Taxonomy

 In some cases, you may need to get a taxonomy object to retrieve information about a registered
taxonomy. The taxonomy object is a PHP object created for registered taxonomies using the
arguments supplied for the $args array in register_taxonomy() .

 get_taxonomy

 The get_taxonomy() function accepts a single parameter of $taxonomy , which should be the name
of the taxonomy. It returns the taxonomy object.

 < ?php
get_taxonomy($taxonomy);
? >

 Suppose you need to display the singular_name label of the album_genre taxonomy that you
registered. You ’ d use the following code to get the taxonomy object and display this label.

 < ?php

/* Get the genre taxonomy object. */
$genre = get_taxonomy(‘album_genre’);

/* Display the singular name of the genre taxonomy. */
echo $genre- > labels- > singular_name;

? >

➤

➤

Using Custom Taxonomies ❘ 325

 Using a Taxonomy with Posts

 When using taxonomy with posts, you ’ ll generally be listing the taxonomy terms for the given post
alongside some or all the content of the post. This would allow viewers to note there is a taxonomy
for the post and allow them to fi nd related posts by a given taxonomy term.

 the_terms

 The the_terms() function returns a formatted list of terms for a given taxonomy of a specifi c post.
It accepts fi ve parameters.

 < ?php
the_terms($id, $taxonomy, $before, $sep, $after);
? >

 $id — The ID of the post to list the taxonomy ’ s terms for.

 $taxonomy — The name of the taxonomy to list terms for.

 $before — Content to display before the list of terms.

 $sep — Any string of text or HTML to separate individual terms in the list. This defaults to
a comma.

 $after — Content to display after the list of terms.

 The the_terms() function is a wrapper function for get_the_term_list() . The former function
displays the list of terms for the taxonomy, and the latter returns them for use in PHP.

 Now revisit the custom shortcode you created in the section on custom post types in which you
listed posts of the music album post type. This time, use the get_the_term_list() function to add
each album ’ s artist(s) and genre(s) to the list.

 You can add the following two lines of code to your shortcode function for displaying the album
artist(s) and genre(s):

$output .= get_the_term_list(get_the_ID(), ‘album_artist’, ‘Artist: ‘, ‘, ‘, ‘ ‘);

$output .= get_the_term_list(get_the_ID(), ‘album_genre’, ‘Genre: ‘, ‘, ‘, ‘ ‘);

 The following is what the code should now look like to display the album_artist and album_genre
taxonomy terms:

 < ?php

add_action(‘init’, ‘boj_music_album_register_shortcodes’);

function boj_music_album_register_shortcodes() {

 /* Register the [music_albums] shortcode. */

➤

➤

➤

➤

➤

326 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 add_shortcode(‘music_albums’, ‘boj_music_albums_shortcode’);
}

function boj_music_albums_shortcode() {

 /* Query albums from the database. */
 $loop = new WP_Query(
 array(
 ‘post_type’ = > ‘music_album’,
 ‘orderby’ = > ‘title’,
 ‘order’ = > ‘ASC’,
 ‘posts_per_page’ = > -1,
)
);

 /* Check if any albums were returned. */
 if ($loop- > have_posts()) {

 /* Open an unordered list. */
 $output = ‘ < ul class=”music-collection” > ’;

 /* Loop through the albums (The Loop). */
 while ($loop- > have_posts()) {

 $loop- > the_post();

 /* Display the album title. */
 $output .= the_title(
 ‘ < li > < a href=”’ . get_permalink() . ‘” > ’,
 ‘ < /a > < /li > ’,
 false
);

 /* Insert a line break. */
 $output .= ‘ < br / > ’;

 /* Show the album artist. */
 $output .= get_the_term_list(get_the_ID(), ‘album_artist’,
 ‘Artist: ‘, ‘, ‘, ‘ ‘);

 /* Show the album genre. */
 $output .= get_the_term_list(get_the_ID(), ‘album_genre’,
 ‘Genre: ‘, ‘, ‘, ‘ ‘);

 }

 /* Close the unordered list. */
 $output .= ‘ < /ul > ’;
 }

 /* If no albums were found. */
 else {
 $output = ‘ < p > No albums have been published.’;
 }

 /* Return the music albums list. */

Using Custom Taxonomies ❘ 327

 return $output;
}

? >

 Code snippet boj - post - type - taxonomy - loop.php

 This code can give you a list of items similar to the list shown in
Figure 11 - 6.

 Taxonomy Conditional Tags

 WordPress has a few conditional tags for taxonomies. Conditional
tags check a specifi c condition and return true if the condition is
met or false if the condition is not met.

 taxonomy_exists

 The taxonomy_exists() function checks if a taxonomy has
been registered with WordPress. It accepts a single parameter of
 $taxonomy , which should be the name of the taxonomy you ’ re
checking.

 < ?php
taxonomy_exists($taxonomy);
? >

 Suppose you wanted to check if the artist taxonomy you created earlier exists. Using the following
code, you can display a custom message based on the return value of the taxonomy_exists() function.

 < ?php

/* If the album artist taxonomy exists. */
if (taxonomy_exists(‘album_artist’)) {

 echo ‘The “artist” taxonomy is registered.’;
}

/* If the album artist taxonomy doesn’t exist. */
else {

 echo ‘The “artist” taxonomy is not registered.’;
}

? >

 is_taxonomy_hierarchical

 The is_taxonomy_hierarchical() function determines if a given taxonomy is hierarchical. It
accepts a single parameter of $taxonomy , which should be the name of the taxonomy.

 FIGURE 11 - 6

328 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 < ?php
is_taxonomy_hierarchical($taxonomy);
? >

 The album genre taxonomy you created is hierarchical, but the album artist taxonomy is not
hierarchical. Now create an array of taxonomy names and loop through each, creating a list of
messages to determine whether each is hierarchical.

 < ?php

/* Create an array of custom taxonomies. */
$taxonomies = array(
 ‘album_artist’,
 ‘album_genre’
);

/* Open an unordered list. */
echo ‘ < ul > ’;

/* Loop through the array of taxonomies. */
foreach ($taxonomies as $tax) {

 /* If the taxonomy is hierarchical. */
 if (is_taxonomy_hierarchical($tax)) {
 echo ‘ < li > The ‘ . $tax . ‘ taxonomy is hierarchical. < /li > ’;
 }

 /* If the taxonomy is non-hierarchical. */
 else {
 echo ‘ < li > The ‘ . $tax . ‘ taxonomy is non-hierarchical. < /li > ’;
 }
}

/* Close the unordered list. */
echo ‘ < /ul > ’;

? >

 is_tax

 The is_tax() function determines if a site visitor is on a term archive page on the frontend of the
site. When using no parameters, it simply checks if the visitor is on any taxonomy archive. However,
you may optionally set either parameter for a more specifi c check.

 < ?php
is_tax($taxonomy, $term);
? >

 $taxonomy — The name of the taxonomy to check for. Defaults to an empty string.

 $term — The name of the term from the taxonomy to check for. Defaults to an
empty string.

➤

➤

 With the next snippet of code, you display up to three different messages depending on which
conditions are true. You fi rst check to see if a visitor is on a taxonomy term archive. You then check
for a specifi c taxonomy: genre. Then, you check if the archive page is in the blues genre.

 < ?php

/* If on a taxonomy term archive page. */
if (is_tax()) {
 echo ‘You are viewing a term archive.’;
}

/* If viewing a term archive for the album genre taxonomy. */
if (is_tax(‘album_genre’)) {
 echo ‘You are viewing a term archive for the genre taxonomy.’;
}

/* If viewing the blues archive for the album genre taxonomy. */
if (is_tax(‘album_genre’, ‘blues’)) {
 echo ‘You are viewing the blues archive for the genre taxonomy.’;
}

? >

 A POST TYPE AND TAXONOMY PLUGIN

 Now that you covered how to use post types and taxonomies, you can put both techniques together
to make a plugin based on this knowledge. The name of your plugin is Music Collection. It enables
users to create new music albums and organize the albums by genre and artist. What you ’ re doing
here is putting together code you ’ ve already covered throughout this chapter.

 The fi rst step you ’ ll take is creating a new fi le in your plugins directory named
 boj - music - collection.php and adding your plugin header at the top of this fi le.

 < ?php
/*
Plugin Name: Music Collection
Plugin URI: http://example.com
Description: Keeps track of a music collection by album, artist, and genre.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

 Code snippet boj - music - collection.php

 The next step is to create the music_album post type, which was outlined in the “ Registering a Post
Type ” section.

A Post Type and Taxonomy Plugin ❘ 329

330 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

/* Set up the post types. */
add_action(‘init’, ‘boj_music_collection_register_post_types’);

/* Registers post types. */
function boj_music_collection_register_post_types() {

 /* Set up the arguments for the ‘music_album’ post type. */
 $album_args = array(
 ‘public’ = > true,
 ‘query_var’ = > ‘music_album’,
 ‘rewrite’ = > array(
 ‘slug’ = > ‘music/albums’,
 ‘with_front’ = > false,
),
 ‘supports’ = > array(
 ‘title’,
 ‘thumbnail’
),
 ‘labels’ = > array(
 ‘name’ = > ‘Albums’,
 ‘singular_name’ = > ‘Album’,
 ‘add_new’ = > ‘Add New Album’,
 ‘add_new_item’ = > ‘Add New Album’,
 ‘edit_item’ = > ‘Edit Album’,
 ‘new_item’ = > ‘New Album’,
 ‘view_item’ = > ‘View Album’,
 ‘search_items’ = > ‘Search Albums’,
 ‘not_found’ = > ‘No Albums Found’,
 ‘not_found_in_trash’ = > ‘No Albums Found In Trash’
),
);

 /* Register the music album post type. */
 register_post_type(‘music_album’, $album_args);
}

 Code snippet boj - music - collection.php

 The fi nal step of the process is creating the taxonomies for the music_album post type: album_
artist and album_genre . How to register a taxonomy was covered in the “ Registering a Custom
Taxonomy ” section.

/* Set up the taxonomies. */
add_action(‘init’, ‘boj_music_collection_register_taxonomies’);

/* Registers taxonomies. */
function boj_music_collection_register_taxonomies() {

 /* Set up the artist taxonomy arguments. */
 $artist_args = array(
 ‘hierarchical’ = > false,
 ‘query_var’ = > ‘album_artist’,
 ‘show_tagcloud’ = > true,

 ‘rewrite’ = > array(
 ‘slug’ = > ‘music/artists’,
 ‘with_front’ = > false
),
 ‘labels’ = > array(
 ‘name’ = > ‘Artists’,
 ‘singular_name’ = > ‘Artist’,
 ‘edit_item’ = > ‘Edit Artist’,
 ‘update_item’ = > ‘Update Artist’,
 ‘add_new_item’ = > ‘Add New Artist’,
 ‘new_item_name’ = > ‘New Artist Name’,
 ‘all_items’ = > ‘All Artists’,
 ‘search_items’ = > ‘Search Artists’,
 ‘popular_items’ = > ‘Popular Artists’,
 ‘separate_items_with_commas’ = > ‘Separate artists with commas’,
 ‘add_or_remove_items’ = > ‘Add or remove artists’,
 ‘choose_from_most_used’ = > ‘Choose from the most popular artists’,
),
);

 /* Set up the genre taxonomy arguments. */
 $genre_args = array(
 ‘hierarchical’ = > true,
 ‘query_var’ = > ‘album_genre’,
 ‘show_tagcloud’ = > true,
 ‘rewrite’ = > array(
 ‘slug’ = > ‘music/genres’,
 ‘with_front’ = > false
),
 ‘labels’ = > array(
 ‘name’ = > ‘Genres’,
 ‘singular_name’ = > ‘Genre’,
 ‘edit_item’ = > ‘Edit Genre’,
 ‘update_item’ = > ‘Update Genre’,
 ‘add_new_item’ = > ‘Add New Genre’,
 ‘new_item_name’ = > ‘New Genre Name’,
 ‘all_items’ = > ‘All Genres’,
 ‘search_items’ = > ‘Search Genres’,
 ‘parent_item’ = > ‘Parent Genre’,
 ‘parent_item_colon’ = > ‘Parent Genre:’,
),
);

 /* Register the album artist taxonomy. */
 register_taxonomy(‘album_artist’, array(‘music_album’), $artist_args);

 /* Register the album genre taxonomy. */
 register_taxonomy(‘album_genre’, array(‘music_album’), $genre_args);
}

? >

 Code snippet boj - music - collection.php

A Post Type and Taxonomy Plugin ❘ 331

332 ❘ CHAPTER 11 EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES

 At this point, you have created an entire plugin with minimal code that creates and organizes a new
type of content within WordPress. All that ’ s left is learning other techniques presented throughout
this book to make your plugin even stronger, such as adding widgets (refer to Chapter 4) and
creating shortcodes (refer to Chapter 10) for your post types and taxonomies.

 SUMMARY

 This chapter represents a small sampling of what ’ s possible with custom post types, post metadata,
and taxonomies. The biggest lesson you should take away is that you can literally use WordPress to
create and manage any type of content you can imagine. The platform isn ’ t simply limited to blog
posts and pages.

 The information presented in this chapter reveals many possibilities for plugin developers. You can
make plugins for public use to give thousands of people new ways to manage content. Or you
can use these tools for custom client web sites that have unique content needs.

JavaScript and Ajax
in WordPress

 WHAT ’ S IN THIS CHAPTER?

 Understanding jQuery and Ajax

 Correctly loading JavaScript in WordPress

 Adding scripts only when needed

 Making interactive interfaces with Ajax in WordPress

 Implementing security checks in your Ajax requests

 JavaScript is principally a language used to code plain text script executed on the client
side, that is, the browser. In this chapter, occurrences of the term “ script ” refer to
JavaScript script.

 This chapter offers a concise introduction to jQuery, a JavaScript library used by WordPress,
and to Ajax. Then it focuses on the WordPress specifi cs, introducing the functions and
concepts you need to know, and eventually you author plugins using JavaScript and Ajax.

 JQUERY – A BRIEF INTRODUCTION

 jQuery is a popular JavaScript framework: It is used by more than 40% of the top million
sites followed by Quantcast (source: http://trends.builtwith.com/javascript) and, more
specifi c to this book ’ s subject, is used by WordPress. jQuery on its own deserves more than an
entire book, so this will be only a short preamble.

➤

➤

➤

➤

➤

 12

334 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 Benefi ts of Using jQuery

 What makes jQuery such a great library and the reasons why it comes with WordPress are among
the following:

 It is light: The minifi ed and gzipped library is only 24kb.

 It uses a quick and terse syntax for faster developing (the write - less - do - more library).

 It is completely a cross browser: What you develop works the same in IE 6+, Firefox 2+,
Safari 3+, Chrome, and Opera 9+.

 It is CSS3 - compliant: It supports CSS 1 - 3 selectors (select document elements such as
 div p.asides or tr:nth - child(odd) td).

 It makes things easier to work on: Events, DOM object manipulation and traversing, effects,
common utilities, and so on.

 It makes Ajax much simpler and easily reads JSON and XML.

 It has a great documentation, available at http://docs.jquery.com/ .

 It ’ s of course possible to use any other library such as PrototypeJS, Mootools, or YUI with
WordPress, but because WordPress uses jQuery for its internal need, you also have lots of great
code to dissect and study when you want to understand the innards of a particular behavior.

 jQuery Crash Course

 The scope of this section is not to teach you how to master this powerful JavaScript library in a
few minutes but to give you some basis to read on without being completely lost, and WordPress
specifi c information.

 The jQuery Object

 In old school JavaScript, you may have written code like

document.getElementById(‘container’).getElementsByTagName(‘a’)

 to select elements that your CSS would simply call #container a . With jQuery, you can now
simply write the following:

$(‘#container a’)

 The dollar $ sign is a shortcut to the jQuery object.

 Syntax and Chaining

 JQuery methods can be chained together, which will return the jQuery object, as you will see in the
following short practical example.

➤

➤

➤

➤

➤

➤

➤

 Create a minimalist HTML content that includes the latest jQuery script from the offi cial website:

 < html >
 < head >
 < script src=’http://code.jquery.com/jquery.js’ > < /script >
 < title > Quick jQuery example < /title >
 < /head >
 < body >
 < p class=”target” > click on me! < /p >
 < p class=”target” > click on me! < /p >
 < p class=”target” > click on me! < /p >
 < /body >
 < /html >

 Now, right before the closing < /body > tag, insert a jQuery snippet to add a background and a
border to each paragraph, and which, when clicked, changes the background color while shrinking
it for 2 seconds before making it disappear:

 < script type=”text/javascript” >
$(‘p.target’)
 .css({ background:’#eef’, border: ‘1px solid red’ })
 .click(function(){
 $(this)
 .css(‘background’,’#aaf’)
 .animate(
 { width:’300px’, borderWidth:’30px’, marginLeft:’100px’},
 2000,
 function(){
 $(this).fadeOut();
 }
);
 });
 < /script >

 Code snippet jquery - example.html

 If you dissect this compact snippet, you can see the main structure:

$(‘p.target’).css().click(function(){ });

 This applies some styling to the selected paragraph and then defi nes the behavior when the event
 ‘ click ’ occurs on this element. Chaining enables a method to return an object itself as a result,
reducing usage of temporary variables and enabling a compact syntax.

 Similarly, within the function defi ning the click behavior, you can see several methods applied to the
 $(this) object, referencing the current jQuery object instantiated by the initial $(‘ p.target ’) .

 What you have now is three independently animated paragraph blocks, as shown in Figure 12 - 1.

jQuery–A Brief Introduction ❘ 335

336 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 No-Confl ict Mode in WordPress

 jQuery is not the only JavaScript library to use the $ sign. For example, PrototypeJS uses $ as a
simple shortcut to the longer function document.getElementById() .

 To enable coexistence with other libraries, jQuery has a no-confl ict mode, activated by default
within WordPress, which gives back $ to other libraries. The result of this is that if you port existing
jQuery code to a WordPress environment, you need to use one of these solutions:

 1. Write jQuery() instead of each $() .

 2. Use a jQuery wrapper.

 To illustrate this, consider the initial jQuery code you would need to port into a WordPress
no - confl ict environment:

$(‘.something’).each(function(){
 $(this).addClass(‘stuff’);
});
$.data(document.body, ‘foo’, 1337);

 Option one would give the following result:

jQuery(‘.something’).each(function(){
 jQuery(this).addClass(‘stuff’);
});
jQuery.data(document.body, ‘foo’, 1337);

 Option two would give the following result:

// jQuery noConflict wrapper:
(function($) {
 // $() will work here
 $(‘.something’).each(function(){
 $(this).addClass(‘stuff’);
 });
 $.data(document.body, ‘foo’, 1337);
})(jQuery);

 Both solutions are programmatically equal, but using a no - confl ict wrapper will enable you to more
conveniently and easily use existing code without having to replace each $ with a longer jQuery .

 FIGURE 12 - 1

 Launching Code on Document Ready

 A frequent requirement in JavaScript is to make sure that elements in a page load before you can do
something with them. Here is a snippet you may have used before:

window.onload = function(){
 /* do something */
}

 This ancient technique has two weaknesses:

 1. Another script can easily overwrite the window.onload defi nition with its own function.

 2. The onload event in JavaScript waits for everything to be fully loaded before executing,
including images, banner ads, external widgets, and so on.

 With jQuery you get a much better solution:

$(document).ready(function(){
 /* do something */
});

 Now, as soon as the DOM hierarchy has been fully constructed, the document “ready” event
triggers: This happens before images load, before ads are shown, so the user experience is much
smoother and faster.

 You can combine the document - ready function with a jQuery noConflict() wrapper, like the
following:

jQuery(document).ready(function($) {

 // $() will work as an alias for jQuery() inside of this function

});

 Using this technique, you can use the $() syntax and be sure that you do not reference a DOM
element that has not been rendered by the browser yet.

 AJAX

 In the WordPress interface when you write a new post, you can add or remove tags and categories
without refreshing the whole page: This is Ajax.

 Ajax is a web development technique that enables a page to retrieve data asynchronously, in the
background, and to update parts of the page without reloading it. The word originally stands as
an acronym for Asynchronous JavaScript And XML, but despite its name the use of XML is not
actually mandatory. You can sometimes read it as AJAX, but the form Ajax is more widely adopted.

 Ajax is not a technology or a programming language but a group of technologies: It involves client -
 side scripts such as JavaScript and server - side script such as PHP that outputs content in HTML,
CSS, XML, and JSON — or actually mostly anything.

Ajax ❘ 337

338 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 What Is Ajax?

 You can now code a simple yet illustrative example of what Ajax is. The page you write can
asynchronously fetch from Twitter the latest tweets of a given user.

 First, start with a basic HTML page structure.

 < html >
 < head >
 < title > Ajax Example < /title >
 < script src=’http://code.jquery.com/jquery.js’ > < /script >
 < /head >
 < body >
 < h1 > Ajax example, reading JSON response < /h1 >
 < p > View < a id=”load” href=”http://twitter.com/ozh” > Ozh’ latest tweets < /a > < /p >
 < div id=”tweets” > < /div > < /body >
 < /html >

 The two things you notice in this HTML document follow:

 1. The page includes the jQuery script.

 2. There is an empty placeholder: < div id= “ tweets ” > < /div > .

 Now onto the Ajax bits: When clicking the link to Twitter, it should display the latest tweets in the
page rather than redirecting to Twitter. The link click behavior can be overtaken:

 < script type=”text/javascript” >

// When the DOM is ready, add behavior to the link
$(document).ready(function(){

 $(‘#load’).click(function(){
 load_tweets();
 // Skip default behavior (ie redirecting to the link href)
 return false;
 });

});

 < /script >

 You now need to defi ne the function that fetches and displays the latest tweets:

 < script type=”text/javascript” >
// Main function: load tweets in JSON
function load_tweets() {

 // Activity indicator:
 $(‘#tweets’).html(‘loading tweets...’);

 // Ajax JSON request
 $.getJSON(
 // Use a JSONP (with callback) URL

 ‘http://twitter.com/status/user_timeline/ozh.json?count=5 & callback=?’,

 // Function that will handle the JSON response
 function(data) {
 // Put empty < ul > in the placeholder
 $(‘#tweets’).html(‘ < ul > < /ul > ’);
 // Read each object in the JSON response
 $(data).each(function(i, tweet) {
 $(‘#tweets ul’).append(‘ < li > ’+tweet.text+’ < /li > ’);
 });
 }
);
}
 < /script >

 What just happened?

 When called by a click on the link, the function load_tweets() adds some feedback so that the
user knows that something is happening in the background (“ loading. . . ”) and then send a JSON
request to Twitter, which if successful will be handled by the callback function that goes through
each JSON item and adds its text element to the placeholder. These events happen on the same page
without reloading the page, as shown in Figure 12 - 2.

 FIGURE 12 - 2

 An important limitation of Ajax to understand is the Same Origin Policy: Due
to browser security restrictions, most Ajax requests cannot successfully retrieve
data from a different domain, subdomain, or even protocol. JSONP requests (as
used here) are not subject to the same origin policy restrictions.

 You have coded a page with a client script that can update a part of the HTML document (the
empty <div > placeholder) with data asynchronously fetched: This is a typical Ajax example.

Ajax ❘ 339

340 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 Review the entire page with both the HTML and the JavaScript:

 < html >
 < head >
 < title > Ajax Example < /title >
 < script src=’http://code.jquery.com/jquery-1.4.2.js’ > < /script >
 < /head >

 < body >
 < h1 > Ajax example, reading JSON response < /h1 >
 < p > View < a id=”load” href=”http://twitter.com/ozh” > Ozh’ latest tweets < /a > < /p >
 < div id=”tweets” > < /div >

 < script type=”text/javascript” >

// When the DOM is ready, add behavior to the link
$(document).ready(function(){

 $(‘#load’).click(function(){
 load_tweets();
 // Skip default behavior (ie sending to the link href)
 return false;
 });

});

// Main function: load tweets in JSON
function load_tweets() {

 // Activity indicator:
 $(‘#tweets’).html(‘loading tweets...’);

 // Ajax JSON request
 $.getJSON(
 ‘http://twitter.com/status/user_timeline/ozh.json?count=5 & callback=?’,

 // Callback function with JSON response
 function(data) {
 // Put empty < ul > in the placeholder
 $(‘#tweets’).html(‘ < ul > < /ul > ’);
 // Read each object in the JSON response and add text to the < ul >
 $(data).each(function(i, tweet) {
 $(‘#tweets ul’).append(‘ < li > ’+tweet.text+’ < /li > ’);
 });
 }
);
}
 < /script >
 < /body >
 < /html >

 Code snippet ajax - example - twitter.html

 Ajax Best Practices

 This simple page is also a neat example of a few JavaScript and Ajax good practices:

 Unobtrusive JavaScript — No inelegant onlick= “ doSomething() ” bits added to HTML
elements; the behavior is added via JavaScript, and the content is separated from the
function. First write content; then add functions.

 Accessible content — A direct consequence of unobtrusive JavaScript is that, on a browser
with no JavaScript such as screen readers that sight - impaired people use, the page makes
sense with a proper link to Twitter.

 Activity indicator — When the user clicks the View Tweets links, there is immediate
feedback (“ loading. . . ”). This is important to let the user know that something is happening
in the background.

 User feedback — When a part of the page updates successfully, it should be obvious to the
user. (A counter example would be, for instance, a login box at the top of a page that would
add content to the bottom of the page.) In more complex applications, it ’ s also important to
deal with errors and let the user know when something unexpectedly failed.

➤

➤

➤

➤

 Ajax popularized the usage of tiny animated images, called throbbers, to
indicate background activity. Sites such as http://ajaxload.info/ enable you
to create your own images that match your design.

 ADDING JAVASCRIPT IN WORDPRESS

 Back to your favorite topic: WordPress! You now learn how to use JavaScript in WordPress: fi rst the
important techniques, and then full - fl edged plugins illustrating them.

 The main skill to master is how to add JavaScript into pages that WordPress generates. As trivial as
it may sound at fi rst, it can quickly become a source of confl icts between plugins or with the core if
incorrectly done.

 A Proper Way to Include Scripts

 The main function you use to insert JavaScript into a WordPress page is wp_enqueue_script() ,
which as it name suggests adds a script to a queue of required scripts.

 Introducing wp_enqueue_script()

 The goal of wp_enqueue_script() is to register a script and tell WordPress to properly inject it in
the page. The function syntax and its fi ve arguments follow:

 < ?php
// Add a script to the insert queue
wp_enqueue_script($handle, $src, $dependencies, $ver, $in_footer);
? >

Adding JavaScript in WordPress ❘ 341

342 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 $handle — The only mandatory argument of the function, this represents the name of
the script in the form of a lowercase string. The name of the script is either provided by
WordPress or is a custom name registered by your plugin. In such a case, you should of
course make it unique.

 $src — If provided, this is the URL of the script. WordPress needs this parameter only if
it does not know this script yet. If the script is already known, this parameter will be simply
ignored.

 $dependencies — An optional array of handles the script you want to add depends on and
as such that must be loaded before. This parameter is needed only if WordPress does not
know about this script.

 $ver — An optional version number, in the liberal form of a string such as 1.0 or 3.0.1 - RC1.
This makes sure the browser fetches the correct version of a script, regardless of its caching
settings.

 $in_footer — An optional Boolean you set to true if instead of having your script injected
into the < head > of the document, you want it placed at the bottom of the page near the
closing < /body > tag.

 Using WordPress ’ queue system to add scripts has four virtues:

 1. No matter how many plugins require the same script, it will be added only once into the page.

 2. You can precisely select on what page you want to add your script. You learn how to do this
a little bit later.

 3. Specifying dependencies as described next, you can expressly set the order in which several
scripts will be included in the page, no matter the sequence of wp_enqueue_script()
function calls.

 4. Scripts are added in compliance to the FORCE_SSL_ADMIN constant value. (That is, if the
user uses WordPress over https in the admin area, scripts will be added over https, too.)

 Typically, you will use wp_enqueue_script() hooked to an early action that occurs before any
content is sent to the browser, such as ‘ init ’ or ‘ template_redirect ’ , and the function call will
output a proper < script > tag in the resulting HTML document, as in the following snippet:

 < ?php
add_action(‘init’, ‘boj_js_add_script’);

function boj_js_add_script() {
 wp_enqueue_script($handle, $src, $dependencies, $ver, $in_footer);
}
? >

 You will use the various parameters of wp_enqueue_script() depending on the scenario, as you
will now read in concrete examples of different usages.

 Adding a Core Script

 You can easily use wp_enqueue_script() to add a core script to your PHP code, for instance the
Prototype JavaScript library.

➤

➤

➤

➤

➤

 < ?php

// Example 1: Add prototype.js which is bundled with WordPress
function boj_js_add_script1() {
 wp_enqueue_script(‘prototype’);
}
? >

 In this fi rst example, no script source is provided: WordPress ships with a version of the JavaScript
framework PrototypeJS and thus knows where to fi nd it.

 This is equivalent to adding the following line to the document < head > :

 < script type=”text/javascript”
 src=”http://example.com/wp-includes/js/prototype.js?ver=1.6.1” > < /script >

 Notice the query string appended to the script URL: WordPress affi xes the known version number
to known scripts.

 Adding a Custom Script

 To add a custom script to your code with wp_enqueue_script() you need to specify its source as
well as its handle.

 < ?php

// Example 2: Add a custom script
function boj_js_add_script2() {
 wp_enqueue_script(‘boj1’, ‘http://example.com/script1.js’);
}
? >

 In this example, you need to specify the full location of the script because it ’ s not a core script.

 This is equivalent to the following:

 < script type=”text/javascript”
 src=”http://example.com/script1.js?ver=3.1” > < /script >

 Notice again the version number in the script URL. Because the version number is omitted in the
 wp_enqueue_script() call, WordPress appends its own version number to it.

 Adding a Custom Script with Dependencies

 Now you will look at how you can clarify that your script has dependencies on other scripts.

 < ?php

// Example 3: Add a custom script that relies on jQuery components
function boj_js_add_script3() {
 wp_enqueue_script(
 ‘boj2’,

Adding JavaScript in WordPress ❘ 343

344 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 ‘http://example.com/script2.js’,
 array(‘jquery-ui-tabs’, ‘jquery-ui-draggable’)
);
}
? >

 Here you have specifi ed that the script depends on other scripts, which therefore need to be loaded
before. These scripts are included in WordPress, so their handle is enough information. This single
line outputs in the HTML document the following set of script includes:

 < script type=’text/javascript’
 src=’http://example.com/wp-includes/js/jquery/jquery.js?ver=1.4.2’ > < /script >
 < script type=’text/javascript’
 src=’http://example.com/wp-includes/js/jquery/ui.core.js?ver=1.7.3’ > < /script >
 < script type=’text/javascript’
 src=’http://example.com/wp-includes/js/jquery/ui.tabs.js?ver=1.7.3’ > < /script >
 < script type=’text/javascript’
 src=’http://example.com/wp-includes/js/jquery/ui.draggable.js?ver=1.7.3’ > < /script >
 < script type=’text/javascript’
 src=’http://example.com/script2.js?ver=3.1’ > < /script >

 Adding a Custom Script with a Version Number

 Including version numbers with your scripts is often practical, and it is easy to accomplish.

 < ?php

// Example 4: Add a custom script with version number
function boj_js_add_script4() {
 wp_enqueue_script(‘boj3’, ‘http://example.com/script3.js’, ‘’, ‘1.3.3.7’);
}
? >

 This inserts the following bits to the document < head > :

 < script type=’text/javascript’
 src=’http://example.com/script3.js?ver=1.3.3.7’ > < /script >

 If you maintain a plugin and update its JavaScript, keeping track of the version included is a good
idea to avoid browser caching issues. Typically, you would, for instance, defi ne a constant that holds
the current plugin version and use this constant anywhere needed in your plugin.

 Adding Scripts in the Footer

 By default, wp_enqueue_script() will output the corresponding < script > tag within the < head >
of the resulting HTML document. Instead, you can elect to add it near the end of document with
passing true as a last parameter:

 < ?php

// Example 5: Add a custom script in the footer
function boj_js_add_script5() {

 wp_enqueue_script(‘boj4’, ‘http://example.com/script4.js’, ‘’, ‘’, true);
}
? >

 Example 5 adds the script near the closing < /body > tag. The potential interest of adding a script to
the page footer is discussed later in this chapter, in the section titled “ Where To Include Scripts. ”

 Injecting a script in the footer is possible if WordPress knows that it is currently
rendering the footer. In the admin area, this always works, but for the blog part
it requires the theme to use the wp_footer() function in its footer. Any good
theme should do this, but be warned that bad themes exist!

 All Parameters at Once

 As a wrap - up, you will now review a call to the function wp_enqueue_script() with all parameters
used at once.

 < ?php

// Example 6: All parameters specified
function boj_js_add_script6() {
 wp_enqueue_script(
 ‘boj5’,
 ‘http://example.com/script5.js’,
 array(‘boj1’),
 ‘6.6.6’,
 true
);
}
? >

 This function call includes the script with version 6.6.6 in the footer. Notice how you have declared
a dependency to script boj1 , which is feasible because the script is now known by WordPress since
example 2. Stating dependency to an unknown script would result in nothing being eventually
included in the page.

 Default Core Scripts

 As you ’ ve read in this chapter and may already know, WordPress comes with numerous core scripts.
You will fi nd these scripts in the following:

 /wp - includes/js and subdirectories for scripts either used on the public part (the site
itself) or the admin backend

 /wp - admin/js and subdirectories for scripts WordPress uses in the admin area

 All these core scripts exist in two versions: a minifi ed .js fi le and a readable (commented and
indented) .dev.js version. By default, the minifi ed fi les are included to save bandwidth, but

➤

➤

Adding JavaScript in WordPress ❘ 345

346 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

you can toggle this behavior for debugging purpose by adding the following line to your
 wp - config.php :

 < ?php
define(‘SCRIPT_DEBUG’, true);
? >

 Handles for all the core scripts are defi ned in the function wp_default_scripts() to be found in
 wp - includes/script - loader.php . Refer to this function source if you need to include a core script
and need to know its handle. The most frequently used in plugins follow:

 ‘ jquery ’ for the jQuery framework

 jQuery components such as ‘ jquery - ui - core ’ , ‘ jquery - ui - tabs ’ , ‘ jquery - ui -
 sortable ’ or ‘ jquery - ui - draggable ’

 ‘ thickbox ’ for the fl oating iframe (such as the one popping over when you want to upload
an image in a post for instance), also known as a “ thickbox ”

 Removing a Queued Script

 If you want to prevent a script from loading, you can use function wp_dequeue_script() to remove
it from the queue as follows:

 < ?php
add_action(‘init’, ‘boj_js_remove_queued’);

function boj_js_remove_queued() {
 // Don’t include PrototypeJS
 wp_dequeue_script(‘prototype’);

 // Don’t include a script added by another plugin
 wp_dequeue_script(‘some_script’);
}
? >

 You can also use function wp_script_is($handle) to check if a script is registered and
enqueued. This trick can be useful in the following, and unfortunately not hypothetical, scenario:

 Imagine you ’ ve authored a new plugin with a neat settings page that makes good use of JavaScript
and Ajax. Quickly, you start to receive support requests about JavaScript functionalities broken
when another particular plugin is activated.

 Indeed, it is not uncommon that plugin authors incorrectly add their scripts to all admin pages when
it ’ s actually needed only on their plugin settings page. (You ’ ll see later in this chapter in the section
 “ Adding Script Only When Needed ” how to add scripts to selected particular pages.) Doing so, they
can involuntarily break other plugins ’ settings pages.

 At this point, you have two options to make your plugin compatible with the culprit:

 Either contact the other plugin authors and tell them to correctly insert their script only
where needed; if you ’ re lucky, they will update it.

 Or on your own plugin settings page, dequeue the confl icting script.

➤

➤

➤

➤

➤

 Replacing a Core Script with Your Own

 WordPress comes with its own scripts, but that does not mean you cannot replace them. For
instance, instead of using the built - in jQuery framework, you can tell your sites to load it from
Google ’ s Content Delivery Network (CDN). By doing so the end user will download the framework
from a highly reliable server that is possibly geographically closer than your own server thanks to
Google ’ s data centers. You will also increase the chances that the user already has the fi le in their
cache and thus save bandwidth on your own server.

 To do this, simply cut and paste the following snippet into all your plugins:

 < ?php

// Replace in-house jQuery with Google’s one
add_action(‘init’, ‘boj_jquery_from_cdn’);
if(!function_exists(‘boj_jquery_from_cdn’)) {
 function boj_jquery_from_cdn() {
 wp_deregister_script(‘jquery’);
 wp_register_script(
 ‘jquery’,
 ‘http://ajax.googleapis.com/ajax/libs/jquery/1.4.3/jquery.min.js’
);
 }
}
? >

 Code snippet boj_jquery_cdn.php

 This snippet does the following:

 Early in the WordPress instantiation process (on action ‘ init ’), the function boj_jquery_
from_cdn() is called.

 This function (defi ned only if it does not already exist because you may have pasted this
snippet in several plugins) deregisters jQuery as known by WordPress and then registers it
again, this time with another script location.

 The function wp_register_script() does not enqueue the script for inclusion in the page; it just
 “ introduces ” it to WordPress for later use if required.

 Registering and Enqueuing Scripts

 If you need to enqueue the same script several times in a plugin, you can use the shorthand function
 wp_register_script() introduced in the previous paragraph.

 First, defi ne your script, using the same parameters as with function wp_enqueue_script() :

 < ?php
wp_register_script($handle, $src, $deps, $ver, $in_footer);
? >

➤

➤

Adding JavaScript in WordPress ❘ 347

348 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 Now you can enqueue it anytime needed:

 < ?php
wp_enqueue_script($handle);
? >

 Managing Styles in WordPress

 This is outside the scope of this chapter but simply too similar not to be mentioned: You can add,
register, and enqueue style sheets (that is, CSS fi les) the same way you add scripts, with similar
functions accepting the same parameters:

 Core styles are defi ned in wp_default_styles() in fi le wp - includes/script - loader.php.

 Add styles with wp_enqueue_style().

 Where to Include Scripts

 You now know that using wp_enqueue_script() you can elect to insert your script in the
document header or at the end of the document body. How does this matter?

 You ’ ve also read that it is important to insert your scripts only when needed, for instance on your
plugin ’ s settings page. How can you do this?

 Head? Footer? Inline?

 The function wp_enqueue_script() can insert scripts in the < head > or near the closing < /body >
tag. But you can also insert them manually, echoing < script src= “ http://example.com/script
.js “ > < /script > in your code. Finally, you can also insert your script inline in your document.

 Each situation has its preferred method:

 In the Head

 The typical script inclusion adds a JavaScript library in the document <head> , as wp_enqueue_
script() does by default:

 < head >
 < script type=”text/javascript” src=”/js/library.js” > < /script >
 < /head >

 Doing so, the page elements may not be available to the script because they are not loaded yet. You
can typically include here libraries and function defi nitions that can then be used later in the page.

 Near the Footer

 The opposite alternative is to add the < script > tag near the end of the HTML document, hence
usually in the footer of the page:

 < script type=”text/javascript” src=”/js/script.js” > < /script >
 < /body >
 < /html >

➤

➤

 This technique has been widely advocated by Yahoo! in its “ Best Practices for Speeding Up Your
Web Site ” (see http://developer.yahoo.com/performance/rules.html). This rule can be effective
if you need to include a third - party script that can potentially slow down or halt the rendering of
your page while it loads and executes, for instance a widget hosted on another site. By adding it late
in the page, the reader has a chance to actually view some page content before the widget halts the
page rendering, making the overall experience less clunky.

 In the Page Content

 Another way to add JavaScript in the page is to insert its < script > tag in an arbitrary location
within the page:

 < /p >
 < /div >
 < div >
 < script type=”text/javascript” src=”/js/script.js” > < /script >

 There are situations when you won ’ t want to always load a script in the head or the footer. Back
to Chapter 10, “ The Shortcode API, ” for a moment: In this chapter you ’ ve created a plugin
that adds a Google map script only if the post contains the appropriate shortcode. Doing this,
you load the script only if a post in the page needs it, instead of systematically loading it with
 wp_enqueue_script() .

 Inline

 The last option to add JavaScript is to add it inline in the document, instead of specifying the src
attribute of the < script > tag:

 < /p >
 < /div >
 < div >
 < script type=”text/javascript” >
 var something = 123;
 do_something();
 < /script >

 You can also add small chunks of JavaScript inline, typically when it won ’ t clutter the page with too
much inline content and does not justify making an external JavaScript fi le.

 If you want to pay attention to HTML or XHTML code validation, remember to use the following
syntax:

 VALID XHTML SYNTAX

 < script type=”text/javascript” >
/* < ![CDATA[*/
// content of your Javascript goes here
/*]] > */
 < /script >

Adding JavaScript in WordPress ❘ 349

350 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 VALID HTML 5 SYNTAX

 < script >
// content of your Javascript goes here
 < /script >

 Pondering the Best Option

 The preferred JavaScript library to develop with WordPress is jQuery, which has a convenient
method to state that a script should start executing only when the DOM (that is, the page elements)
is ready. If you use jQuery ’ s document ready method, it becomes rather unimportant if the script is
loaded in the header, the footer, or anywhere in the page.

 For scripts that you did not author and do not rely on such a DOM ready technique, it is still
relevant to consider the best spot to load them.

 Adding Scripts Only When Needed

 More important than where in the page to load a script is to load it only when needed. Doing so,
you not only reduce site load, page rendering time, and bandwidth usage, but you also decrease the
chances of having your scripts confl ict with another script they don ’ t relate with.

 You can now code a plugin that performs this important task of adding a given script where needed
and only where needed. Because the objective of this section is to learn how to target in WordPress
specifi c pages for JavaScript inclusion, the scripts are simple alert() boxes to instantly identify
which script has loaded.

 Getting the Location of Your Plugin ’ s Scripts

 Your plugin has to guess its own URL on the user install before it can add to pages the JavaScript
it ships with. In Chapter 2, “ Plugin Foundation, ” you learned about an appropriate plugin folder
structure, with a subdirectory for each type of fi le, as shown in Figure 12 - 3.

 FIGURE 12 - 3

 Assuming you follow this sane advice, the following snippet includes a fi le named script.js
located within the /js subdirectory of your plugin directory:

 < ?php

// guess current plugin directory URL
$plugin_url = plugin_dir_url(__FILE__);

// Enqueue script
wp_enqueue_script(‘boj_script’, $plugin_url.’js/script.js’);
? >

 This is a great snippet to reuse: It does not hardcode anything related to the user install specifi cs
(location of the wp - content directory, for instance). The function plugin_dir_url() returns the
URL directory path (with a trailing slash) for the plugin fi le passed as a parameter. (It will, for
instance, return http://example.com/wp-content/plugins/bj_insertjs/).

 Never hardcode the path or URL of your plugin: You cannot assume where the
 wp - content folder will be on a user ’ s install because it does not necessarily
exist within the main WordPress directory. Instead, opt for this always safe
snippet to guess your plugin ’ s location, which works even if the user renames
your plugin folder.

 For this plugin you can use boj_insertjs as a prefi x, and the plugin starts with defi ning its own
script location:

 < ?php
/*
Plugin Name: Add JavaScript
Plugin URI: http://example.com/
Description: Demonstrates how to properly insert JS into different pages
Author: Ozh
Author URI: http://wrox.com
*/

// URL to the /js directory of the plugin
define(‘BOJ_INSERTJS’, plugin_dir_url(__FILE__).’js’);

 Code snippet boj_insertjs/plugin.php

 Adding in Admin Pages

 The general rule is that wp_enqueue_script() needs to be called early and before any content
has been printed to the page. The hook and technique to use depends on where exactly you need
the script.

 The plugin can add a different script on various pages:

 One script on all admin pages

 One script only on the plugin settings page

➤

➤

Adding JavaScript in WordPress ❘ 351

352 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 One script only on another plugin generated page under the Users menu

 One script only on the Edit Comments page

 Because the script you want to add here concerns only the admin area, you can rely on a hook that
occurs only in this context. Since you add a few pages in the admin menu, the hook admin_menu is
a perfect candidate:

// Add new admin pages
add_action(‘admin_menu’, ‘boj_insertjs_add_page’);

// Add new admin pages
function boj_insertjs_add_page() {

 Within this function you will now sequentially add the four scripts, as detailed in the following
snippets:

 // 1. Add JS to all the admin pages
 wp_enqueue_script(‘boj_insertjs_1’, BOJ_INSERTJS.’/admin.js’);

 You enqueued a script that can load in all pages of the admin area, either built - in such as the
dashboard or created by plugins:

 // 2. Add a page under Settings
 $settings = add_options_page(‘Insert JS’, ‘Insert JS’, ‘manage_options’,
 ‘boj_insertjs_settings’, ‘boj_insertjs_options_page’
);

 Now you added a menu entry using add_options_page() . Using the return value of this function
call, you can hook into an interesting hook that is “ load - $pagename ” where the page name is a
variable part:

 // Add JS to the plugin setting page only
 add_action(‘load-’.$settings, ‘boj_insertjs_add_settings_script’);

 This action fi res only when loading the plugin settings page. Now create another plugin page, and
use a different hook to also fi re an action only on that page:

 // 3. Add a page under Users
 $users = add_users_page(‘Insert JS’, ‘Insert JS’, ‘manage_options’,
 ‘boj_insertjs_users’, ‘boj_insertjs_users_page’
);

 // 4. Add JS to the users page, with a different hook
 add_action(‘admin_print_scripts-’.$users, ‘boj_insertjs_add_users_script’);

} // end of function boj_insertjs_add_page()

 These two admin page specifi c actions now need to be defi ned: They will be regular wp_enqueue_
script() calls:

➤

➤

// Add JS to the plugin’s settings page
function boj_insertjs_add_settings_script() {
 wp_enqueue_script(‘boj_insertjs_2’, BOJ_INSERTJS.’/settings.js’);
}

// Add JS to the plugin’s users page, in the page footer for a change
function boj_insertjs_add_users_script() {
 wp_enqueue_script(‘boj_insertjs_3’, BOJ_INSERTJS.’/users.js’,
 ‘’, ‘’, true
);
}

 You can now load another script into a specifi c and core admin page, for instance the Comments
page. Again, the load - $pagename hook can prove useful:

// Add JS to the Comments page
add_action(‘load-edit-comments.php’, ‘boj_insertjs_on_comments’);
function boj_insertjs_on_comments() {
 wp_enqueue_script(‘boj_insertjs_4’, BOJ_INSERTJS.’/comments.js’);
}

 Code snippet boj_insertjs/plugin.php

 Using wp_enqueue_script() attached to specifi c admin hooks, you have made sure that given
scripts load only where needed in the admin area.

 This cannot be emphasized enough: Always be selective regarding where to add
JavaScript, and target precisely pages where your scripts will be needed. Most
of the time you need to add a custom script to your plugin settings page only:
Use the above trick.

 Adding in Public Pages

 To add scripts to the public area, the principle is similar: Rely on a hook that will be triggered
only when the blog part is viewed, for instance ‘ template_redirect ’ , which is triggered when
WordPress is about to load the required theme.

// Add JS to pages of the blog
add_action(‘template_redirect’, ‘boj_insertjs_add_scripts_blog’);
function boj_insertjs_add_scripts_blog() {

 // To all pages of the blog
 wp_enqueue_script(‘boj_insertjs_5’, BOJ_INSERTJS.’/blog.js’);

 // To single post pages
 if(is_single()) {

Adding JavaScript in WordPress ❘ 353

354 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 wp_enqueue_script(‘boj_insertjs_6’, BOJ_INSERTJS.’/single.js’);
 }

 // To the “About” page
 if(is_page(‘About’)) {
 wp_enqueue_script(‘boj_insertjs_7’, BOJ_INSERTJS.’/about.js’);
 }
}

 Code snippet boj_insertjs/plugin.php

 What you have done here is hook into an action that occurs only on the public part, and then using
conditional tags such as is_single(), you have targeted specifi c pages. You can learn more about
these conditional tags at http://codex.wordpress.org/Conditional_Tags .

 Of course, you can select on which page to add JavaScript using other conditions than just the page
type. Following are examples on how to add a script if a user is not logged in or add another script
only if the single post being viewed has comments:

// Add script if user is not logged
add_action(‘template_redirect’, ‘boj_insertjs_notlogged’);
function boj_insertjs_notlogged() {
 if(!is_user_logged_in())
 wp_enqueue_script(‘boj_insertjs_8’, BOJ_INSERTJS.’/notlogged.js’);
}

// Add script on single post & pages with comments only
add_action(‘template_redirect’, ‘boj_insertjs_add_ifcomments’);
function boj_insertjs_add_ifcomments() {
 if(is_single()) {
 global $post;
 if($post- > comment_count)
 wp_enqueue_script(‘boj_insertjs_9’, BOJ_INSERTJS.’/hascomments.js’);
 }
}

 Dynamic Scripts in WordPress

 JavaScript fi les are usually static .js fi les, but you sometimes need your script to be aware of data
coming from WordPress, such as an option value or a plugin path.

 How Not to Do It and Why

 An obvious way to make your script dynamic would be to serve a dynamic script.js.php fi le
instead of a static one so that PHP generates the JavaScript on - the - fl y.

 To make such a script aware of WordPress data, a common way adopted by a lot of coders is
something along the lines of this:

 1. In WordPress, enqueue the dynamic script as usual:

 < ?php

wp_enqueue_script(‘dyn’, $path.’/script.js.php’);
? >

 2. In the script.js.php fi le, start the fi le with the following:

 < ?php

header(‘Content-type: application/javascript’);
include(‘../../../wp-load.php’);
? >
/* javascript (and PHP) code here */

 This (albeit frequent) solution has several critical fl aws:

 Finding wp - load.php or wp - config.php can be diffi cult: The whole wp - content directory
could be placed somewhere nonstandard and not necessarily as a subdirectory of the folder
where wp - load.php is. Failing to properly include this fi le can result in a fatal error when
the script tries to access a WordPress function.

 Requiring wp - load.php in an embedded fi le wholly instantiates WordPress again,
which means that for every page request the load on the web server will be doubled: two
WordPress init, both reading all options from memory, each loading plugins, and so on.

 Depending on the confi guration, browsers may not cache .js.php fi les, which may cause
server and bandwidth issues on active web sites.

 A Better Solution

 The preceding solution is tempting because the .js.php fi le enables fl exible code, for instance
having the fi le to output totally different JavaScript code depending on variable values.

 If you must use such a fi le, a better solution is to pass the needed variable as query arguments to the
 .js.php fi le and make this one completely independent from WordPress (in other words, not
loading wp - load.php).

 1. In WordPress, get the needed information and then enqueue the dynamic script with query
arguments:

 < ?php

// Get info the script needs
$var1 = get_option(‘myplugin_var1’);
$var2 = get_home_url();

// Craft dynamic script query
$script = ‘script.js.php?var1=’ . $var1 . ‘ & var2=’ . $var2 ;
wp_enqueue_script(‘dyn’, $path.’/’.$script);
? >

➤

➤

➤

Adding JavaScript in WordPress ❘ 355

356 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 2. Now your script.js.php fi le would look like this:

 < ?php
header(‘Content-type: application/javascript’);

// Get variable
$var = isset($_GET[‘var1’] ? $_GET[‘var1’] : ‘’);
$home = isset($_GET[‘var2’] ? $_GET[‘var2’] : ‘’);

? >
/* javascript (and PHP) code here using $var and $home */

 This solution is arguably better because you don ’ t instantiate WordPress another time in the script
fi le, which is now completely independent from WordPress and the folders ’ location.

 There is still a potential problem to address regarding caching because browsers may or may not
cache the script.js.php?args fi le. Although this won ’ t be a big deal if the script is to be used in
the admin area only, it can be problematic on the public side of the site where page hits are much
more frequent and from many more different users.

 An Ideal Solution

 A more robust solution is to output dynamic variables inline in the WordPress page that needs
JavaScript and enqueue a totally static cacheable fi le. For instance, in the next section of this chapter
titled “ Ajax in WordPress, ” you code an Ajax plugin in which you need to know the URL of the fi le
that handles Ajax requests in WordPress, for example, http://example.com/wp-admin/admin-
ajax.php , and you use the technique explained here.

 First, you enqueue a truly static script, the usual way:

 < ?php

// Enqueue the script
wp_enqueue_script(‘boj_myplugin’, plugin_dir_url(__FILE__).’js/script.js’,);
? >

 Then, collect in an array all the WordPress data your script needs:

 < ?php

$params = array(
 ‘option1’ = > get_option(‘boj_myplugin_option’),
 ‘home’ = > get_home_url();
);

? >

 Now, fi nally tell WordPress that wherever it includes your static script, it should output inline
variables right before it:

 < ?php

wp_localize_script(‘boj_myplugin’, ‘boj_myplugin_params’, $params);

? >

 The function wp_localize_script() needs three arguments: the script handle, registered by the
preceding wp_enqueue_script() call; a unique name for the options; and an array of strings that
will be converted into a properly escaped and quoted javascript string.

 Now review the full snippet and its actual result in the page:

 < ?php

// Enqueue the script
wp_enqueue_script(‘boj_myplugin’, plugin_dir_url(__FILE__).’js/script.js’,);

$params = array(
 ‘option1’ = > get_option(‘boj_myplugin_option’),
 ‘home’ = > get_home_url();
);

wp_localize_script(‘boj_myplugin’, ‘boj_myplugin_params’, $params);

? >

 This snippet outputs HTML similar to the following:

 < script type=’text/javascript’ >
/* < ![CDATA[*/
var boj_myplugin_params = {
 option1: “it\’s an option value”,
 home: “http://example.com/”
};
/*]] > */
 < /script >
 < script
 type=’text/javascript’
 src=’http://example.com/wp-content/plugins/boj_myplugin/js/script.js?ver=3.1’ >
 < /script >

 The JavaScript functions located in script.js can now easily access the dynamic variables, which
will be respectively here boj_myplugin_params.option1 and boj_myplugin_params.home .

 Using the function wp_localize_script() (introduced in Chapter 5, “ Internationalization ”) may
seem a bit unexpected at fi rst because you ’ re not localizing here, but it does have several benefi ts:

 You can use a completely static script, hence fully cacheable by browsers and not needing
any processing by the server.

 The inline JavaScript is bound to the main script defi ned in wp_enqueue_script() :
You precisely target pages, and if you need to dequeue the main script, there will be no
unnecessary inline JavaScript left.

➤

➤

Adding JavaScript in WordPress ❘ 357

358 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 The inline JavaScript is always properly escaped and quoted.

 The function takes care of the required CDATA tags not to break XHTML validation.

 AJAX IN WORDPRESS

 So far, you now know how to fl awlessly include JavaScript in pages that WordPress generates.
Now it ’ s time to learn how to handle and process Ajax requests and then get your hands greasy
with coding.

 Ajax in WordPress: Principles

 As explained in the introductory section about Ajax, you can break down the Ajax fl ow of events,
as shown in Figure 12 - 4.

➤

➤

 FIGURE 12 - 4

page
rendered

event
(e.g. click)

data
processing

send Ajax
request

receive
Ajax

response

send Ajax
response

server side

client side

data
processing

page
portion

updated

data
processing

 Implementing Ajax in WordPress is a streamlined process: Using jQuery makes it simple to both
send and receive Ajax data, while a dedicated action in WordPress handles all the server - side parts.

 Client Side: Send Ajax Request, Receive Response

 When the client - side event occurs (element clicked, timer completed, form submitted and such), you
process and collect the data that will be sent in the Ajax request:

var data = {
 action: ‘boj_myplugin_do_ajax_request’,
 some_var: ‘some value’,
 other_var: ‘other value’
};

 Note the ‘action ’ parameter; it will be used later.

 Using jQuery, sending the Ajax request (here via POST) and waiting for the server response is done
in one function call to which you pass the admin - ajax.php URL the data to post and a callback:

jQuery.post(‘http://example.com/wp-admin/admin-ajax.php’, data, function(resp) {
 /*
 1. process response object ‘resp’
 2. update part of page
 */
});

 All Ajax requests are sent to admin - ajax.php , located in the wp - admin directory. Despite its name
and location, this fi le can indeed handle and process Ajax requests sent both from the admin area
and the public side of the site, from both logged in known users and anonymous users.

 Head to http://api.jquery.com/category/ajax/ to learn more about the
syntax of Ajax requests in jQuerytype= “ note “ .

 Server - Side: Receive Ajax Request; Send Response

 In the client - side part, the JavaScript posts data to admin - ajax.php , including a parameter named
 ‘ action ’ with a value of ‘ boj_myplugin_do_ajax_request ’ . You guessed it already: This value
must be unique, and prefi xing it as usual is a good practice.

 The ‘ action ’ parameter is how you connect a function defi ned in WordPress and an Ajax request,
using the two wp_ajax_ actions:

 wp_ajax_$action hooks functions if the user is logged in.

 wp_ajax_nopriv_$action hooks functions if the user is not logged in and has no privilege.

 For instance, in your plugin you would defi ne the following action hook:

 < ?php
add_action(‘wp_ajax_boj_myplugin_do_ajax_request’, ‘boj_myplugin_process_ajax’);
? >

 Now defi ne the function that will process the request and return data:

 < ?php
// process Ajax data and send response
function boj_myplugin_process_ajax() {

 // check authority and permissions: current_user_can()

 // check intention: wp_verify_nonce()

 // process data sent by the Ajax request

 // echo data response that the Ajax function callback will process

 die();
}

? >

➤

➤

Ajax in WordPress ❘ 359

360 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 Depending on the situation, you need to pay attention to user permissions and intention, as
explained in Chapter 6, “ Plugin Security. ”

 After security checks conclude, your function can process data in the $_POST array, echoing a result
that is understandable by the client - side Ajax callback function and die() .

 All Ajax requests, both from the front side and the admin side, are handled by
 admin - ajax.php . If this directory is protected at a lower level than WordPress
(like with a .htaccess password), this fi le will not be accessible to anonymous
readers, and Ajax requests will fail.

 As a practical application of this implementation process and the techniques to insert JavaScript,
you can now code a neat plugin.

 A Complete Example: Instant “ Read More ” Links

 As you may know, you can break posts in WordPress using the < ! - - more - - > tag. You can now
make a sexy plugin that will enable a reader to read the rest of a story without being redirected to
a new page: A click on the Read More link can display inline the second part of a post, as shown in
Figure 12 - 5.

 FIGURE 12 - 5

 Your Ajax Read More plugin can use boj_arm_ as a prefi x. The plugin needs to do the following
tasks:

 Insert a script that monitors clicks on Read More links.

 Insert the script only if there is a Read More link on the page.

 Get the second part of a post after the Read More break.

 Inserting the JavaScript with a Twist

 By the time WordPress prints the < head > of a page, you cannot know if the page contains a Read
More link. You can then use a smarter technique:

 1. Enqueue the JavaScript for inclusion in the footer.

 2. As every post is displayed, check for the presence of a Read More link.

 3. Right before it ’ s actually added to the footer, check if it ’ s actually needed and remove it
otherwise.

 The fi rst step is to enqueue the JavaScript in the footer.

 < ?php

// Plugin version, bump it up if you update the plugin
define(‘BOJ_ARM_VERSION’, ‘1.0’);

// Enqueue the script, in the footer
add_action(‘template_redirect’, ‘boj_arm_add_js’);
function boj_arm_add_js() {

 // Enqueue the script
 wp_enqueue_script(‘boj_arm’,
 plugin_dir_url(__FILE__).’js/script.js’,
 array(‘jquery’), BOJ_ARM_VERSION, true
);

 // Get current page protocol
 $protocol = isset($_SERVER[“HTTPS”]) ? ‘https://’ : ‘http://’;

 // Output admin-ajax.php URL with same protocol as current page
 $params = array(
 ‘ajaxurl’ = > admin_url(‘admin-ajax.php’, $protocol)
);
 wp_localize_script(‘boj_arm’, ‘boj_arm’, $params);
}

? >

 As explained before, Ajax actions are handled by admin - ajax.php , located in the wp - admin folder,
and which location is guessed using the function admin_url() . But remember an important limitation
of Ajax described in the preparatory section: because of the same origin policy, Ajax requests and
responses must be processed on the same domain, including same protocol (http or https).

➤

➤

➤

Ajax in WordPress ❘ 361

362 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 In WordPress you can enforce the https protocol in the admin area even if the public part is on http
(defi ning constant ‘ FORCE_SSL_ADMIN ’ to true), but you cannot view a page on http://example.com/
that sends Ajax requests to https://example.com/wp-admin/admin-ajax.php .

 That ’ s why you ’ re calling here admin_url() with a second parameter that will enforce the current
protocol used in the public part in the location of admin - ajax.php . In other words, even if the
admin area has an obligatory https:// preference, viewing the public pages under http:// will return
 http://example.com/wp-admin/admin-ajax.php .

 Remember: to succeed, Ajax requests must be performed on the same domain,
subdomain (http://example.com/ and http://www.example.com/ are different)
and protocol (http versus https).

 For the second step, as explained, you now check, as each post is displayed, if there is a Read More
link that can justify the inclusion of the JavaScript in the footer.

 < ?php

// Flag to state if the script is needed
global $boj_arm_needjs;
$boj_arm_needjs = false;

// Inspect each post to check if there’s a “read more” tag
add_action(‘the_post’, ‘boj_arm_check_readmore’);
function boj_arm_check_readmore($post) {
 if (preg_match(‘/ < !--more(.*?)?-- > /’, $post- > post_content)
 & & !is_single()) {
 global $boj_arm_needjs;
 $boj_arm_needjs = true;
 }
}

? >

 Here, during the loop on each unprocessed and unformatted post, you ’ re checking if $post -
 > post_content contains the < ! - - more - - > tag, and if that ’ s not a single page where the post will be
displayed entirely, fl ag a Boolean to true , stating that the page will need the JavaScript.

 For the third and fi nal step in JavaScript inclusion, in the footer right before WordPress adds the
script, check if it ’ s needed and remove it if not.

 < ?php

// Don’t add the script if actually not needed
add_action(‘wp_print_footer_scripts’, ‘boj_arm_footer_maybe_remove’, 1);
function boj_arm_footer_maybe_remove() {

 global $boj_arm_needjs;
 if(!$boj_arm_needjs) {
 wp_deregister_script(‘boj_arm’);
 }
}

? >

 WordPress adds scripts in the footer when the action ‘ wp_print_footer_scripts ’ is fi red:
Hooked into it and if the Boolean fl ag is false , simply deregister the JavaScript fi le. Because you ’ ve
also used wp_localize_script() to add the inline bits, it will also be removed if the script is
dequeued, leaving no superfl uous bits on the page.

 Client - Side JavaScript

 Now that you know that the script will be included only if needed, you can start writing that script.
The script will loop over each link that has class= “ more - link “ and add to them the following
behavior when clicked:

 Guess the post ID, from the Read More link anchor that will have a fragment such as
 #more - 45 .

 Change the link text to “ Loading. . . ” so that the reader knows that something is happening
in the background.

 Send an Ajax request to admin - ajax.php with the post ID, requesting the second part of
the post.

 Receive the second part of the post from admin - ajax.php , and display it inline in place of
the Read More link.

 Following is the complete script:

(function($) {
 $(‘a.more-link’).click(function(){

 // copy the this object for future reference
 var link = this;

 // change link text
 $(link).html(‘loading...’);

 // get post id from its href
 var post_id = $(link).attr(‘href’).replace(/^.*#more-/, ‘’);

 // Prepare Ajax data: action and post id
 var data = {
 action: ‘boj_arm_ajax’,
 post_id: post_id
 };

 // Send Ajax request with data
 $.get(boj_arm.ajaxurl, data, function(data){

➤

➤

➤

➤

Ajax in WordPress ❘ 363

364 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 // add content after link and remove link
 $(link).after(data).remove();
 });

 // prevent default behavior of the link that was clicked
 return false;
 });

})(jQuery);

 Notice how your script uses the URL of admin - ajax.php , contained in boj_arm.ajaxurl and as
printed by the call to wp_localize_script() .

 Server - Side Ajax Processing

 The last part of this plugin is now the server - side processing: Admin - ajax.php will receive a post ID,
which you use to fetch the second part of the post corresponding to this ID.

 First, defi ne the Ajax action and its associated function:

 < ?php

// Ajax handler
add_action(‘wp_ajax_nopriv_boj_arm_ajax’, ‘boj_arm_ajax’);
add_action(‘wp_ajax_boj_arm_ajax’, ‘boj_arm_ajax’);

function boj_arm_ajax() {
 // Modify the way WP gets post content
 add_filter(‘the_content’, ‘boj_arm_get_2nd_half’);

 // setup the main Query again
 query_posts(‘p=’.absint($_REQUEST[‘post_id’]));

 // “The Loop”
 if (have_posts()) : while (have_posts()) : the_post();
 the_content();
 endwhile; else:
 echo “post not found :/”;
 endif;

 // reset Query
 wp_reset_query();

 // Always die() in functions echoing content for Ajax requests
 die();
}

? >

 Because the reader can either be anonymous random users or users with privileges, you have
used both the wp_ajax_ and the wp_ajax_nopriv_ hooks, pointing to the same function
 boj_arm_ajax() .

 The Ajax handler function boj_arm_ajax() is mainly a custom loop that just has the one occurring
on the blog page to display posts, except that it is limited to one post of a given ID. It has no
security measure implemented apart from validating the post ID as an absolute integer: It ’ s used to
display post content, just as anyone on the front page can do, so there is no permission to check.

 You ’ re almost there: As-is, the function would return the entire post, but you want only the second
half of it. The fi lter introduced in this function will do the trick:

 < ?php

// Get second part of a post after the “more” jump
function boj_arm_get_2nd_half($content) {
 $id = absint($_REQUEST[‘post_id’]);
 $content = preg_replace(“!^.* < span id=\”more-$id\” > < /span > !s”, ‘’, $content);
 return $content;
}

? >

 Hooked into fi lter ‘ the_content’ , this function receives the formatted post content and returns
it after removing everything until the element that WordPress inserts in place of the Read
More link.

 All done! Review the whole plugin Ajax Read More and its JavaScript component:

 < ?php
/*
Plugin Name: Ajax Read More
Plugin URI: http://example.com/
Description: Ajaxify the “Read more” links
Version: 1.0
Author: Ozh
Author URI: http://wrox.com
*/

// Flag to state if the script is needed
global $boj_arm_needjs;
$boj_arm_needjs = false;

// Plugin version, bump it up if you update the plugin
define(‘BOJ_ARM_VERSION’, ‘1.0’);

// Enqueue the script, in the footer
add_action(‘template_redirect’, ‘boj_arm_add_js’);
function boj_arm_add_js() {

 // Enqueue the script
 wp_enqueue_script(‘boj_arm’,
 plugin_dir_url(__FILE__).’js/script.js’,
 array(‘jquery’), BOJ_ARM_VERSION, true
);

Ajax in WordPress ❘ 365

366 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 // Get current page protocol
 $protocol = isset($_SERVER[“HTTPS”]) ? ‘https://’ : ‘http://’;

 // Output admin-ajax.php URL with same protocol as current page
 $params = array(
 ‘ajaxurl’ = > admin_url(‘admin-ajax.php’, $protocol)
);
 wp_localize_script(‘boj_arm’, ‘boj_arm’, $params);
}

// Don’t add the script if actually not needed
add_action(‘wp_print_footer_scripts’, ‘boj_arm_footer_maybe_remove’, 1);
function boj_arm_footer_maybe_remove() {
 global $boj_arm_needjs;
 if(!$boj_arm_needjs) {
 wp_deregister_script(‘boj_arm’);
 }
}

// Inspect each post to check if there’s a “read more” tag
add_action(‘the_post’, ‘boj_arm_check_readmore’);
function boj_arm_check_readmore($post) {
 if (preg_match(‘/ < !--more(.*?)?-- > /’, $post- > post_content)
 & & !is_single()) {
 global $boj_arm_needjs;
 $boj_arm_needjs = true;
 }
}

// Ajax handler
add_action(‘wp_ajax_nopriv_boj_arm_ajax’, ‘boj_arm_ajax’);
add_action(‘wp_ajax_boj_arm_ajax’, ‘boj_arm_ajax’);
function boj_arm_ajax() {
 // Modify the way WP gets post content
 add_filter(‘the_content’, ‘boj_arm_get_2nd_half’);

 // setup Query
 query_posts(‘p=’.absint($_REQUEST[‘post_id’]));

 // “The Loop”
 if (have_posts()) : while (have_posts()) : the_post();
 the_content();
 endwhile; else:
 echo “post not found :/”;
 endif;

 // reset Query
 wp_reset_query();
 die();
}

// Get second part of a post after the “more” jump
function boj_arm_get_2nd_half($content) {

 $id = absint($_REQUEST[‘post_id’]);
 $content = preg_replace(“!^.* < span id=\”more-$id\” > < /span > !s”, ‘’, $content);
 return $content;
}

 Code snippet boj_readmore/plugin.php

(function($) {
 $(‘.more-link’).click(function(){
 var link = this;
 $(link).html(‘loading...’);
 var post_id = $(link).attr(‘href’).replace(/^.*#more-/, ‘’);
 var data = {
 action: ‘boj_arm_ajax’,
 post_id: post_id
 };
 $.get(boj_arm.ajaxurl, data, function(data){
 $(link).after(data).remove();
 });
 return false;
 });
})(jQuery);

 Code snippet boj_readmore/js/script.js

 Another Example: Frontend Comment Deletion

 You are now going to make another plugin that can enable a user with suffi cient privileges to
instantly delete comments from the frontend, on the post page without waiting for the page
to refresh, as shown in Figure 12 - 6.

 FIGURE 12 - 6

Ajax in WordPress ❘ 367

368 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 You can code the plugin Instant Delete Comment to point out three aspects of Ajax programming in
WordPress:

 How to implement security in Ajax

 The Wp_Ajax_Response class and its XML response

 How to read an XML response in JavaScript

 Plugin Basis

 Start the plugin with inserting the JavaScript if needed and adding the Delete Comment link after
each comment. Use boj_idc_ as a prefi x.

 < ?php

/*
Plugin Name: Instant Delete Comment
Plugin URI: http://example.com/
Description: Add a quick link to instantly delete comments
Author: Ozh
Version: 1.0
Author URI: http://wrox.com/
*/

// Add script on single post & pages with comments only, if user has edit rights
add_action(‘template_redirect’, ‘boj_idc_addjs_ifcomments’);
function boj_idc_addjs_ifcomments() {
 if(is_single() & & current_user_can(‘moderate_comments’)) {
 global $post;
 if($post- > comment_count) {
 $path = plugin_dir_url(__FILE__);

 wp_enqueue_script(‘boj_idc’, $path.’js/script.js’);
 $protocol = isset($_SERVER[“HTTPS”]) ? ‘https://’ : ‘http://’;
 $params = array(
 ‘ajaxurl’ = > admin_url(‘admin-ajax.php’, $protocol)
);
 wp_localize_script(‘boj_idc’, ‘boj_idc’, $params);
 }
 }
}

// Add an admin link to each comment
add_filter(‘comment_text’, ‘boj_idc_add_link’);
function boj_idc_add_link($text) {
 // Get current comment ID
 global $comment;
 $comment_id = $comment- > comment_ID;

 // Get link to admin page to trash comment, and add nonces to it
 $link = admin_url(‘comment.php?action=trash & c=’.$comment_id);
 $link = wp_nonce_url($link, ‘boj_idc-delete-’.$comment_id);
 $link = “ < a href=’$link’ class=’boj_idc_link’ > delete comment < /a > ”;

➤

➤

➤

 // Append link to comment text
 return $text.” < p > [admin: $link] < /p > ”;
}

? >

 Code snippet boj_deletecomment/plugin.php

 The function boj_idc_addjs_ifcomments() is self - explanatory. In the function boj_idc_add_
link() that modifi es the comment text, however, you can notice the use of wp_nonce_url() (refer
to Chapter 6 for details on this function).

 The link added to each comment has the class attribute boj_idc_link and the following location
pattern: http://example.com/wp-admin/comment.php?action=trash & c=11 & _wpnonce=551e407bc1 .
When clicked, this link posts via Ajax the parameter c (the comment ID) and the nonce value.

 Server - Side Ajax Handler: Security Checks and XML Response Parsing

 The server - side Ajax handler will be the following function:

 < ?php

// Ajax handler
add_action(‘wp_ajax_boj_idc_ajax_delete’, ‘boj_idc_ajax_delete’);
function boj_idc_ajax_delete() {
 $cid = absint($_POST[‘cid’]);

 $response = new WP_Ajax_Response;

 if(
 current_user_can(‘moderate_comments’) & &
 check_ajax_referer(‘boj_idc-delete-’.$cid, ‘nonce’, false) & &
 wp_delete_comment($cid)
) {
 // Request successful
 $response- > add(array(
 ‘data’ = > ‘success’,
 ‘supplemental’ = > array(
 ‘cid’ = > $cid,
 ‘message’ = > ‘this comment has been deleted’
),
));
 } else {
 // Request failed
 $response- > add(array(
 ‘data’ = > ‘error’,
 ‘supplemental’ = > array(
 ‘cid’ = > $cid,
 ‘message’ = > ‘an error occurred’
),
));
 }

Ajax in WordPress ❘ 369

370 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 $response- > send();

 exit();
}

? >

 Code snippet boj_deletecomment/plugin.php

 First, notice the security measures and then the use of a new class: WP_Ajax_Response .

 Ajax Security: Nonces and Permissions

 Similarly to what you have practiced in the Chapter 6, before executing any request here, you fi rst
verify the user ’ s permission and intention.

 The function check_ajax_referer() is similar to check_admin_referer() and takes up to three
parameters:

 1. $action — A string corresponding to the unique action used to compute the nonce string,
here ‘ boj_idc - delete - ’ .$comment_id .

 2. $query_arg — The name of the parameter passed to the Ajax request and containing
the nonce string. If this parameter is omitted, the function will look in $_REQUEST for
 _ajax_nonce or _wpnonce . In this case, you are looking for the nonce string in the
parameter nonce .

 3. $die — A Boolean with a default value of true telling WordPress to die with message – 1,
which can then be interpreted as a failure by the client - side JavaScript. In this plugin you
handle the error checking yourself; therefore, the value of false passed.

 The WP_Ajax_Response Class

 Notice how the function boj_idc_ajax_delete() uses an instance of this new class:

 < ?php

// New class instance
$response = new WP_Ajax_Response;

// Add data to the response
$response- > add(array(
 ‘data’ = > ‘success’,
 ‘supplemental’ = > array(
 ‘cid’ = > $cid,
 ‘message’ = > ‘this comment has been deleted’
),
));

// Output the response
$response- > send();

? >

 The purpose of this class is to output a well - formed XML response that will be then easy to parse
with jQuery. Its method add() appends the argument to the XML response. It expects a string into
its element data and an arbitrary array passed to supplemental. You can for instance here easily
return translated strings to the static JavaScript in the frontend.

 Its method send() prints the data as an XML document and then dies to prevent any further
output. For instance, the result of the previous snippet will be the following XML:

 < ?xml version=’1.0’ standalone=’yes’? >
 < wp_ajax >
 < response action=”boj_idc_ajax_delete_0” >
 < object id=”0” position=”1” >
 < response_data > success < /response_data >
 < supplemental >
 < cid > 12 < /cid >
 < message > this comment has been deleted < /message >
 < /supplemental >
 < /object >
 < /response >
 < /wp_ajax >

 Now write the client - side JavaScript to see how you will parse this XML response.

 Client - Side XML Response Parsing

 The script will be this:

jQuery(document).ready(function($) {

 $(‘.boj_idc_link’).click(function(){
 var link = this;
 // get comment id and nonce
 var href = $(link).attr(‘href’);
 var id = href.replace(/^.*c=(\d+).*$/, ‘$1’);
 var nonce = href.replace(/^.*_wpnonce=([a-z0-9]+).*$/, ‘$1’);

 var data = {
 action: ‘boj_idc_ajax_delete’,
 cid: id,
 nonce: nonce
 }

 $.post(boj_idc.ajaxurl, data, function(data){
 var status = $(data).find(‘response_data’).text();
 var message = $(data).find(‘supplemental message’).text();
 if(status == ‘success’) {
 $(link).parent().after(‘ < p > < b > ’+message+’ < /b > < /p > ’).remove();
 } else {
 alert(message);
 }
 });

Ajax in WordPress ❘ 371

372 ❘ CHAPTER 12 JAVASCRIPT AND AJAX IN WORDPRESS

 return false;

 });

});

 Code snippet boj_deletecomment/js/script.js

 As in the previous plugin, this function modifi es the click behavior and parses the link href
attribute to get the comment ID and the nonce value that are then posted in the Ajax request.

 The callback of the Ajax function shows how easy it is with jQuery to parse an XML response,
using $.find() to literally fi nd an element into the document tree, just as you would select an
element into an HTML page.

 Debugging Ajax

 When you write PHP code, you instantly notice if your code has an error: The server prints an error
in bold, and you can use functions such as var_dump() to check what variables or objects contain.
The diffi culty with Ajax is that everything happens in the background, so if your script fails on the
client side or server side, it can be more diffi cult to diagnose.

 The browser Firefox has an invaluable and free addon called Firebug that can prove indispensable to
inspect an Ajax request. You can, for instance, check the parameters passed and the XML response,
as shown in Figure 12 - 7.

 FIGURE 12 - 7

 You can download Firebug for Firefox at http://getfi rebug.com/ . The browser Chrome has a built -
 in inspector tool that provides the same kind of functionalities.

 Firefox with Firebug and Chrome can also let you easily check the JavaScript variables, array, or
object as you would do it in PHP with var_dump() , using the function console.log() :

if(typeof(console) == ‘object’) {
 console.log(‘script loaded’);
 console.log(an_array, an_object, some_string);
}

 SUMMARY

 If you were to memorize just one thing from this chapter, it should be that when adding JavaScript
to your WordPress pages, you should always target where you will need the script, using a proper
 wp_enqueue_script() call.

 The other thing that this chapter should have shown is that adding Ajax to WordPress is fairly easy
because of the dedicated actions wp_ajax_ and wp_ajax_nopriv_ . The only diffi culty here will be
mastering JavaScript and the awesome jQuery library.

Summary ❘ 373

Cron

 WHAT ’ S IN THIS CHAPTER?

 Understanding cron

 Managing schedule and single events

 Unscheduling cron events

 Viewing all scheduled cron jobs

 Creating custom intervals in cron

 Creating practical use examples

 The execution of certain functions on a schedule is a key feature of the WordPress API. In this
chapter you learn how to schedule events in cron, unschedule events, and set custom cron schedule
intervals. You also create more advanced, practical - use example plugins using cron.

 WHAT IS CRON?

 Cron is how WordPress handles scheduled events. The term cron comes from the time - based
job scheduler in UNIX. WordPress uses cron for various core functionality. These scheduled jobs
include checking for new versions of WordPress, checking for plugin and theme updates, and
publishing scheduled posts.

 How Is Cron Executed?

 One of the common misconceptions about cron in WordPress is that cron is always running,
looking for tasks to execute. This actually isn ’ t true. Cron is run when a frontend or admin
page is loaded on your web site. Every time a page is requested, WordPress checks if there are
any cron jobs to run. Any visit to your Web site can trigger cron, whether from a visitor or a
search engine bot.

➤

➤

➤

➤

➤

➤

 13

376 ❘ CHAPTER 13 CRON

 This is also one of the caveats of cron. Because cron runs on page load, it is not 100% precise. If you
have a scheduled cron job to run at midnight, but your Web site lacks adequate traffi c, the scheduled
job may not run until 12:30 a.m. or later because no one is on your Web site that late.

 SCHEDULING CRON EVENTS

 Two types of cron events can be scheduled in WordPress: single and recurring. A recurring event is
a cron job that runs on a schedule and has a set recurring time in which it will run again. A single
event runs once and never runs again until it is rescheduled.

 Scheduling a Recurring Event

 When scheduling an event to execute using cron, you actually start by creating a custom action
hook. That hook will be registered with the cron scheduler to execute at the scheduled time. When
the action hook runs, it will trigger the custom function you set in your hook and process any code
in that function.

 To schedule an event in WordPress, use the wp_schedule_event() function.

 < ?php wp_schedule_event(timestamp, recurrence, hook, args); ? >

 The function accepts the following parameters:

 timestamp — The time you want the event to occur

 recurrence — How often the event should reoccur

 hook — The action hook name to execute

 args — Arguments to pass to the hook ’ s callback function

 Now build a simple example plugin to demonstrate the power of a cron scheduled task. As with
most plugins, you create a settings menu option and page.

 < ?php
add_action(‘admin_menu’, ‘boj_cron_menu’);

function boj_cron_menu() {

 //create cron example settings page
 add_options_page(‘Cron Example Settings’, ‘Cron Settings’,
‘manage_options’, ‘boj-cron’, ‘boj_cron_settings’);

}
? >

 In this example, you schedule the cron event when the user visits your settings page for the fi rst
time. You can schedule your cron event in many different ways, for example, on plugin activation

➤

➤

➤

➤

Scheduling Cron Events ❘ 377

or when the user enables a specifi c option value, but for this example the settings page will work
just fi ne.

 Next you create a custom action hook and function to execute when the cron runs the
scheduled task.

 < ?php
add_action(‘boj_cron_hook’, ‘boj_cron_email_reminder’);

function boj_cron_email_reminder() {

 //send scheduled email
 wp_mail(‘you@example.com’, ‘Elm St. Reminder’,
 ‘Don\’t fall asleep!’);

}
? >

 As you can see, you fi rst create a custom action hook named boj_cron_hook . When that hook is
called, it executes your custom boj_email_reminder() function. This is the function that runs
when the cron scheduled job runs. This example uses the wp_mail() function to send an email to
make sure you stay awake!

 Now create the custom boj_cron_settings() function to display your settings page and schedule
the cron job.

 < ?php
function boj_cron_settings() {

 //verify event has not been scheduled
 if (!wp_next_scheduled(‘boj_cron_hook’)) {

 //schedule the event to run hourly
 wp_schedule_event(time(), ‘hourly’, ‘boj_cron_hook’);

 }

}
? >

 First, use the wp_next_scheduled() function to verify your cron job hasn ’ t been scheduled
already. This function returns the timestamp for the cron event, and if that event doesn ’ t exist it
will return false .

 After you have verifi ed the cron job hasn ’ t been scheduled, it ’ s time to schedule it! You do this
using the wp_schedule_event() function. The fi rst parameter set is the current time. The
second parameter is the recurrence in which this task should run. By default WordPress has three
recurrence settings: hourly , daily , and twicedaily . In this example you set the task to run hourly.
The fi nal parameter you send is the name of the action hook to execute when the cron job runs. This
is set to the custom action hook you created earlier: boj_cron_hook .

378 ❘ CHAPTER 13 CRON

 You have successfully created a scheduled cron job in WordPress! Every hour WordPress will
automatically send an email reminding you to stay awake.

 Now review the full plugin source code:

 < ?php
/*
Plugin Name: Cron Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin demonstrating Cron in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘admin_menu’, ‘boj_cron_menu’);

function boj_cron_menu() {

 //create cron example settings page
 add_options_page(‘Cron Example Settings’, ‘Cron Settings’,
 ‘manage_options’, ‘boj-cron’, ‘boj_cron_settings’);

}

add_action(‘boj_cron_hook’, ‘boj_cron_email_reminder’);

function boj_cron_email_reminder() {

 //send scheduled email
 wp_mail(‘you@example.com’, ‘Elm St. Reminder’,
 ‘Don\’t fall asleep!’);

}

function boj_cron_settings() {

 //verify event has not been scheduled
 if (!wp_next_scheduled(‘boj_cron_hook’)) {

 //schedule the event to run hourly
 wp_schedule_event(time(), ‘hourly’, ‘boj_cron_hook’);

 }

}
? >

 Code snippet boj - cron.php

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Scheduling Cron Events ❘ 379

 Scheduling a Single Event

 Typically events scheduled in cron are recurring, but there may be an occasion when you want to
schedule a single event in cron. This means the event would run once and not be scheduled to run
again. To schedule a single event use the wp_schedule_single_event() function:

 < ?php wp_schedule_single_event(timestamp, hook, args); ? >

 The function accepts the following parameters:

 timestamp — The time you want the event to run

 hook — The action hook name to execute

 args — Arguments to pass to the hook ’ s callback function

 Now look at a working example. Just as before start by adding a menu item that links to your
settings page.

 < ?php
//create the plugin menu
add_action(‘admin_menu’, ‘boj_cron_single_menu’);

function boj_cron_single_menu() {

 //create cron example settings page
 add_options_page(‘Cron Example Settings’, ‘Cron Settings’,
 ‘manage_options’, ‘boj-single-cron’, ‘boj_cron_single_settings’);

}
? >

 Next create the settings page that will schedule the single event to run.

 < ?php
function boj_cron_single_settings() {

 //verify event has not been scheduled
 if (!wp_next_scheduled(‘boj_single_cron_hook’)) {

 //schedule the event to in one hour
 wp_schedule_single_event(time()+3600,
 ‘boj_single_cron_hook’);

 }

}
? >

 Using the wp_schedule_single_event() function, you set the execution time to time()+3600 ,
which is exactly one hour from the time the cron event is scheduled. The second parameter,
 boj_single_cron_hook , is the custom hook the cron job will execute. Now create the hook.

➤

➤

➤

380 ❘ CHAPTER 13 CRON

 < ?php
//create the custom hook for cron scheduling
add_action(‘boj_single_cron_hook’,
 ‘boj_cron_single_email_reminder’);

function boj_cron_single_email_reminder () {

 //send scheduled email
 wp_mail(‘you@example.com’, ‘Reminder’, ‘You have a meeting’);

}
? >

 Now look at the full plugin source code.

 < ?php
/*
Plugin Name: Schedule Single Event Cron
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: schedules a single event to run in cron
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

//create the plugin menu
add_action(‘admin_menu’, ‘boj_cron_single_menu’);

function boj_cron_single_menu() {

 //create cron example settings page
 add_options_page(‘Cron Example Settings’, ‘Cron Settings’,
 ‘manage_options’, ‘boj-single-cron’, ‘boj_cron_single_settings’);

}

//create the custom hook for cron scheduling
add_action(‘boj_single_cron_hook’,
 ‘boj_cron_single_email_reminder’);

function boj_cron_single_email_reminder () {

 //send scheduled email
 wp_mail(‘you@example.com’, ‘Reminder’, ‘You have a meeting’);

}

function boj_cron_single_settings() {

 //verify event has not been scheduled
 if (!wp_next_scheduled(‘boj_single_cron_hook’)) {

 //schedule the event to in one hour

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Scheduling Cron Events ❘ 381

 wp_schedule_single_event(time()+3600,
 ‘boj_single_cron_hook’);

 }

}
? >

 Code snippet boj - single - event.php

When scheduling a single cron event, you do not need to unschedule it. The cron
event runs once and unschedules itself when complete.

 Unscheduling an Event

 When a cron job is scheduled in WordPress, it is stored in the wp_options table. This means the
scheduled job will not be removed, or unscheduled, by simply deactivating the plugin that scheduled
it. If the plugin is deactivated without properly unscheduling the cron job. WordPress can’t execute
the scheduled job because the plugin code will no longer be available. However, the cron job
scheduled will still be stored and WordPress will try to execute it on the schedule set.

 To properly unschedule a cron event, use the wp_unschedule_event() function.

 < ?php wp_unschedule_event(timestamp, hook, args); ? >

 The function accepts the following parameters:

 timestamp — Time of the next occurrence to run

 hook — The action hook to unschedule

 args — Arguments to pass to the hook ’ s callback function

 Now unschedule the cron job you scheduled earlier.

 < ?php
//get time of next scheduled run
$timestamp = wp_next_scheduled(‘boj_cron_hook’);

//unschedule custom action hook
wp_unschedule_event($timestamp, ‘boj_cron_hook’);
? >

 First, use the wp_next_scheduled() function to determine the exact time of the next occurrence
for your scheduled hook. After the next scheduled time has been determined, unschedule the cron
job using wp_unschedule_event() . The only two parameters required are the time and custom
hook associated with the scheduled job. After this function has been executed, the cron scheduled
job will be unscheduled in WordPress and will no longer execute.

➤

➤

➤

382 ❘ CHAPTER 13 CRON

 Specifying Your Own Cron Intervals

 As discussed, WordPress has three recurrence values by default: Hourly , Twice Daily , and Daily .
WordPress makes it easy to create a custom recurrence setting to use when scheduling cron jobs. To
create a custom recurrence, use the cron_schedules fi lter hook. Now create a recurrence option for
a weekly scheduled job.

 < ?php
add_filter(‘cron_schedules’, ‘boj_cron_add_weekly’);

function boj_cron_add_weekly($schedules) {

 //create a ‘weekly’ recurrence schedule option
 $schedules[‘weekly’] = array(
 ‘interval’ = > 604800,
 ‘display’ = > ‘Once Weekly’
);

 return $schedules;
}
? >

 The fi rst step is to call the add_filter() function to execute the cron_schedules fi lter hook. The
fi lter executes your custom function boj_cron_add_weekly() . Notice how the variable $schedules
is passed as a parameter to your custom function. This variable stores all recurrence schedules as an
array in WordPress. To create your new schedule, you add a value to this array.

 You fi rst defi ne the name of your recurrence to weekly by setting $schedules[‘ weekly ’] �

array() . Next, set the two values for your new schedule: interval and display. The interval value
is the number of seconds when the cron job should run. In this example, use 604800, which is how
many seconds exist in a week. The display value is the friendly display name of the new recurrence.

 The fi nal step to your custom schedule is to return the $schedules value from the function. Now
you have a custom recurrence value defi ned in cron. You can easily use this new recurrence value
when scheduling a cron event:

 < ?php wp_schedule_event(time(), ‘weekly’, ‘boj_cron_hook’); ? >

 Viewing Cron Events Scheduled

 When working with cron jobs, it can be useful to see exactly what jobs are scheduled in WordPress.
There is no built - in way to view these events, so create a plugin to view all cron jobs scheduled in
WordPress.

 First, create a new menu for your plugin page.

 < ?php
add_action(‘admin_menu’, ‘boj_view_cron_menu’);

function boj_view_cron_menu() {

 //create view cron jobs settings page

Scheduling Cron Events ❘ 383

 add_options_page(‘View Cron Jobs’, ‘View Cron Jobs’,
 ‘manage_options’, ‘boj-view-cron’, ‘boj_view_cron_settings’);

}
? >

 Next, create the boj_view_cron_settings() function to display the cron jobs scheduled:

 < ?php
function boj_view_cron_settings() {

 $cron = _get_cron_array();
 $schedules = wp_get_schedules();
 $date_format = ‘M j, Y @ G:i’;

 First, set the variable $cron to the value of _get_cron_array() . This function stores all scheduled cron
jobs in an array. Next, set $schedules to the value of the wp_get_schedules() function. This function
stores all registered cron recurrence options available. The fi nal variable set is the $date_format , which
you use to format the cron run date and time later.

 Now it ’ s time to create the table to display the cron jobs scheduled in a nice, familiar format.

 < div class=”wrap” id=”cron-gui” >
 < h2 > Cron Events Scheduled < /h2 >

 < table class=”widefat fixed” >
 < thead >
 < tr >
 < th scope=”col” > Next Run (GMT/UTC) < /th >
 < th scope=”col” > Schedule < /th >
 < th scope=”col” > Hook Name < /th >
 < /tr >
 < /thead >
 < tbody >

 The table features three columns of data: Next Run, Schedule, and the Hook Name. Now for the
fun part: it ’ s time to loop through the scheduled cron jobs and display them in your table.

 < ?php foreach ($cron as $timestamp = > $cronhooks) { ? >
 < ?php foreach ((array) $cronhooks as $hook = > $events)
 { ? >
 < ?php foreach ((array) $events as $event) { ? >
 < tr >
 < td >
 < ?php echo date_i18n($date_format,
 wp_next_scheduled($hook)); ? >
 < /td >
 < td >
 < ?php
 if ($event[‘schedule’]) {
 echo $schedules[$event[‘schedule’]]
 [‘display’];
 } else {
 ? > One-time < ?php

384 ❘ CHAPTER 13 CRON

 }
 ? >
 < /td >
 < td > < ?php echo $hook; ? > < /td >
 < /tr >
 < ?php } ? >
 < ?php } ? >
 < ?php } ? >
 < /tbody >
 < /table >
 < /div >
 < ?
}
? >

 This can look a little overwhelming, but it ’ s actually quite straightforward. The code loops through
the $cron variable, which stores the array value from _get_cron_array() , extracting the data
needed from each array element.

 To display the next scheduled run time, use the WordPress function date_i18n() . This
function converts a date into a localized format based on the timestamp set. The timestamp in this
example was set in the $date_format set earlier to display the date in a format such as Month
Day, Year @ Time. To get the time that you want to format, use the wp_next_scheduled() function.

 Next, the schedule is displayed from the $schedules variable. If the event is recurring, the recurrence
value is displayed. If the event does not have a recurrence set, then “ One - time ” is displayed. The
fi nal piece of information displayed is the hook
name scheduled to execute.

 Now when viewing your plugin settings page,
all scheduled cron jobs in WordPress will
be displayed with their next scheduled run
time, recurrence, and hook being executed, as
shown in Figure 13 - 1.

 Now look at the full plugin source code:

 < ?php
/*
Plugin Name: View Cron Jobs Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin demonstrating Cron in WordPress
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘admin_menu’, ‘boj_view_cron_menu’);

function boj_view_cron_menu() {

 //create view cron jobs settings page

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 13 - 1

Scheduling Cron Events ❘ 385

 add_options_page(‘View Cron Jobs’, ‘View Cron Jobs’,
 ‘manage_options’, ‘boj-view-cron’, ‘boj_view_cron_settings’);

}

function boj_view_cron_settings() {

 $cron = _get_cron_array();
 $schedules = wp_get_schedules();
 $date_format = ‘M j, Y @ G:i’;
 ? >
 < div class=”wrap” id=”cron-gui” >
 < h2 > Cron Events Scheduled < /h2 >

 < table class=”widefat fixed” >
 < thead >
 < tr >
 < th scope=”col” > Next Run (GMT/UTC) < /th >
 < th scope=”col” > Schedule < /th >
 < th scope=”col” > Hook Name < /th >
 < /tr >
 < /thead >
 < tbody >
 < ?php foreach ($cron as $timestamp = > $cronhooks) { ? >
 < ?php foreach ((array) $cronhooks as
 $hook = > $events) { ? >
 < ?php foreach ((array) $events as $event) { ? >
 < tr >
 < td >
 < ?php echo date_i18n($date_format,
 wp_next_scheduled($hook)); ? >
 < /td >
 < td >
 < ?php
 if ($event[‘schedule’]) {
 echo $schedules[
 $event[‘schedule’]][‘display’];
 } else {
 ? > One-time < ?php
 }
 ? >
 < /td >
 < td > < ?php echo $hook; ? > < /td >
 < /tr >
 < ?php } ? >
 < ?php } ? >
 < ?php } ? >
 < /tbody >
 < /table >
 < /div >
 < ?
}
? >

 Code snippet boj - view - cron - jobs.php

386 ❘ CHAPTER 13 CRON

 TRUE CRON

 As mentioned earlier, a WordPress cron is not a “ true ” cron, in that it runs based on page requests
and not a true timed interval. However, you can set up a true cron and disable the WordPress page
request cron.

 The fi rst step to set up a true cron is to disable cron in WordPress by adding the following line of
code to your wp - config.php fi le.

define(‘DISABLE_WP_CRON’, true);

 This disables WordPress from loading wp - cron.php to look for cron jobs to execute. Now that
you ’ ve disabled cron in WordPress, you need to set up some other method to execute cron.

 A common method is using wget to load wp - cron.php on a schedule. If your server is Linux -
 based, cron will already exist and can be scheduled using the crontab command. If your server is
Windows - based, you can install wget and create a scheduled task to execute it. The wget command
would work like this:

wget http://www.example.com/wp-cron.php

 When wget requests wp - cron.php WordPress looks for all scheduled cron jobs and executes as
needed. Setting up true cron on your server will guarantee your cron jobs will run perfectly on
schedule without missing a beat.

 PRACTICAL USE

 Now that you understand how cron works, look at some more advanced cron example plugins.

 Deleting Post Revisions Weekly

 A post revision is saved in the database each time you save a post or page. This can grow the size of
your database quickly, and it should be purged on occasion. In this example, you create a plugin that
schedules a weekly cron job to delete all post revisions from the database that are older than 30 days.

 First, create the custom action hook that the cron job will run every week.

 < ?php
//create the custom hook for cron scheduling
add_action(‘boj_del_rev_cron_hook’, ‘boj_cron_rev_delete’);

function boj_cron_rev_delete() {
 global $wpdb;

 $sql = “ DELETE a,b,c
 FROM $wpdb- > posts a
 LEFT JOIN $wpdb- > term_relationships b ON (a.ID = b.object_id)
 LEFT JOIN $wpdb- > postmeta c ON (a.ID = c.post_id)
 WHERE a.post_type = ‘revision’

Practical Use ❘ 387

 AND DATEDIFF(now(), a.post_modified) > 30 “;

 //execute query to delete all post revisions and meta data
 $wpdb- > query($wpdb- > prepare($sql));

}
? >

 The action hook boj_del_rev_cron_hook triggers the custom function boj_cron_rev_delete() .
First, you must defi ne $wpdb as a global variable, so the wpdb class will be available for use in
interacting with the WordPress database. Next, generate the query to delete post revisions older
than 30 days.

 The $sql variable stores the query to execute. As you can see, the query joins the posts table with
the term_relationships and postmeta tables. This ensures that not only is the post revision
deleted but also any post meta data stored for that revision.

 Finally, execute the query using the wpdb query() and prepare() functions. The prepare function
is one of the most important functions in the wpdb class. This function is used for escaping variables
passed to your SQL queries. Even though the query in this plugin has no user defi ned variables, it ’ s a
best practice to always use the prepare() function when running database queries.

 Now that the delete post revision function has been constructed, it ’ s time to add a setting to enable
the scheduled job. This plugin will use the Settings API, as covered in Chapter 7, “ Plugin Settings, ”
to add a single check box option to the General settings page in WordPress.

 < ?php
add_action(‘admin_init’, ‘boj_cron_rev_admin_init’);

function boj_cron_rev_admin_init(){

 //register the options in the Settings API
 register_setting(
 ‘general’,
 ‘boj_cron_rev_options’
);

 //register the field in the Settings API
 add_settings_field(
 ‘boj_cron_rev_field’,
 ‘Delete post revisions weekly?’,
 ‘boj_cron_rev_setting_input’,
 ‘general’,
 ‘default’
);

 //load the option value
 $options = get_option(‘boj_cron_rev_options’);
 $boj_del_rev = $options[‘boj_del_rev’];

 // if the option is enabled and not already
 // scheduled lets schedule it
 if ($boj_del_rev == ‘on’ & &

388 ❘ CHAPTER 13 CRON

 !wp_next_scheduled(‘boj_del_rev_cron_hook’)) {

 //schedule the event to run hourly
 wp_schedule_event(time(), ‘weekly’,
 ‘boj_del_rev_cron_hook’);

 // if the option is NOT enabled and scheduled lets unschedule it
 } elseif ($boj_del_rev != ‘on’ & &
 wp_next_scheduled(‘boj_del_rev_cron_hook’)) {

 //get time of next scheduled run
 $timestamp = wp_next_scheduled(‘boj_del_rev_cron_hook’);

 //unschedule custom action hook
 wp_unschedule_event($timestamp, ‘boj_del_rev_cron_hook’);

 }

}
? >

 Use the admin_init action hook to execute the custom boj_cron_rev_admin_init() function.
To register the plugin option, use the register_setting() and add_settings_field() Settings
API functions. The code registers a boj_cron_rev_options option. This option is where the plugin
will store its only option value, whether the scheduled job is enabled. The callback function is set to
 boj_cron_rev_setting_input() when adding the settings fi eld.

 The second part of the code determines whether the option is enabled for the plugin. The option
value is loaded using get_option() and stored in the $boj_del_rev variable. If the option is
enabled, it checks if the job has been scheduled, and if not schedules it. If the option is disabled, it
checks if the job has been unscheduled, and if not unschedules it.

 Next, create the boj_cron_rev_setting_input() function to display the option check box.

 < ?php
function boj_cron_rev_setting_input() {

 // load the ‘boj_del_rev’ option from the database
 $options = get_option(‘boj_cron_rev_options’);
 $boj_del_rev = $options[‘boj_del_rev’];

 //display the option checkbox
 echo “ < input id=’boj_del_rev’
 name=’boj_cron_rev_options[boj_del_rev]’
type=’checkbox’ “. checked($boj_del_rev, ‘on’, false). “ / > ”;

}
? >

 As before, you load the option value using get_option() . This will be used to determine if the check
box is checked. The HTML check box fi eld is then displayed. Use the checked function to compare

Practical Use ❘ 389

the $boj_del_dev variable and ‘ on ’ . If they match,
the option is enabled and should be checked. The
check box option will now be displayed on the General
settings page, as shown in Figure 13 - 2.

 The fi nal piece to the plugin is to create a weekly
recurrence fi lter for cron. This enables the plugin to
delete post revisions once a week.

 < ?php
//register a weekly recurrence
add_filter(‘cron_schedules’, ‘boj_cron_add_weekly’);

function boj_cron_add_weekly($schedules) {

 //create a ‘weekly’ recurrence schedule
 $schedules[‘weekly’] = array(
 ‘interval’ = > 604800,
 ‘display’ = > ‘Once Weekly’
);

 return $schedules;
}
? >

 Your cron job can use weekly as the recurrence setting. That ’ s it! You now have a fully functional
plugin that can automatically delete all post revisions older than 30 days once a week. Now review
the full plugin code:

 < ?php
/*
Plugin Name: Delete Post Revisions Weekly
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: Deletes post revisions older than 30 days once a week
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

//create the custom hook for cron scheduling
add_action(‘boj_del_rev_cron_hook’, ‘boj_cron_rev_delete’);

function boj_cron_rev_delete() {
 global $wpdb;

 $sql = “ DELETE a,b,c
 FROM $wpdb- > posts a
 LEFT JOIN $wpdb- > term_relationships b
 ON (a.ID = b.object_id)
 LEFT JOIN $wpdb- > postmeta c
 ON (a.ID = c.post_id)
 WHERE a.post_type = ‘revision’

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 FIGURE 13 - 2

390 ❘ CHAPTER 13 CRON

 AND DATEDIFF(now(), a.post_modified) > 30 “;

 //execute query to delete all post revisions and meta data
 $wpdb- > query($wpdb- > prepare($sql));

}

add_action(‘admin_init’, ‘boj_cron_rev_admin_init’);

function boj_cron_rev_admin_init(){

 //register the options in the Settings API
 register_setting(
 ‘general’,
 ‘boj_cron_rev_options’
);

 //register the field in the Settings API
 add_settings_field(
 ‘boj_cron_rev_field’,
 ‘Delete post revisions weekly?’,
 ‘boj_cron_rev_setting_input’,
 ‘general’,
 ‘default’
);

 //load the option value
 $options = get_option(‘boj_cron_rev_options’);
 $boj_del_rev = $options[‘boj_del_rev’];

 // if the option is enabled and
 // not already scheduled lets schedule it
 if ($boj_del_rev == ‘on’ & &
 !wp_next_scheduled(‘boj_del_rev_cron_hook’)) {

 //schedule the event to run hourly
 wp_schedule_event(time(), ‘weekly’,
 ‘boj_del_rev_cron_hook’);

 // if the option is NOT enabled and scheduled lets unschedule it
 } elseif ($boj_del_rev != ‘on’ & &
 wp_next_scheduled(‘boj_del_rev_cron_hook’)) {

 //get time of next scheduled run
 $timestamp = wp_next_scheduled(‘boj_del_rev_cron_hook’);

 //unschedule custom action hook
 wp_unschedule_event($timestamp, ‘boj_del_rev_cron_hook’);

 }

}

function boj_cron_rev_setting_input() {

 // load the ‘boj_del_rev’ option from the database

Practical Use ❘ 391

 $options = get_option(‘boj_cron_rev_options’);
 $boj_del_rev = $options[‘boj_del_rev’];

 //display the option checkbox
 echo “ < input id=’boj_del_rev’
 name=’boj_cron_rev_options[boj_del_rev]’
 type=’checkbox’ “. checked($boj_del_rev, ‘on’, false). “ / > ”;

}

//register a weekly recurrence
add_filter(‘cron_schedules’, ‘boj_cron_add_weekly’);

function boj_cron_add_weekly($schedules) {

 //create a ‘weekly’ recurrence schedule
 $schedules[‘weekly’] = array(
 ‘interval’ = > 604800,
 ‘display’ = > ‘Once Weekly’
);

 return $schedules;
}

? >

 Code snippet boj - delete - rev - cron.php

 The Blog Pester Plugin

 Now create a plugin to send an email automatically when no new posts have been published in the
last three days. This can be a handy reminder to create a new post.

 First, start by creating the custom action hook and function:

 < ?php
//create the custom hook for cron scheduling
add_action(‘boj_pester_cron_hook’, ‘boj_cron_pester_check’);

function boj_cron_pester_check() {
 global $wpdb;

 //retrieve latest published post date
 $sql = “ SELECT post_date FROM $wpdb- > posts
 WHERE post_status = ‘publish’ AND post_type = ‘post’
 ORDER BY post_date DESC LIMIT 1 “;
 $latest_post_date = $wpdb- > get_var($wpdb- > prepare($sql));

 if (strtotime($latest_post_date) < = strtotime(‘-3 day’)) {
 //post is older than 3 days

 //populate email values
 $email_to = ‘you@example.com’;

392 ❘ CHAPTER 13 CRON

 $email_subject = ‘Blog Reminder’;
 $email_msg = ‘Water your blog!
 Its been three days or more since your last post’;

 //send scheduled email
 wp_mail($email_to, $email_subject, $email_msg);

 }

}
? >

 The boj_cron_pester_check() function is executed by cron and can check when the last post was
published. Use the get_var() and prepare() functions of the wpdb class to execute the custom
query and return the single value of the last published post date.

 To compare the dates, use the PHP strtotime() function. This function takes a date, or any
English textual date time, and returns a UNIX timestamp. This makes it easy to compare two dates
because they are now in the same format. In the previous code, you are comparing the variable
 $latest_post_date to the UNIX timestamp for 3 days ago, or ‘ - 3 day ’ in this case. If the latest
post date is less than or equal to the value of ‘ - 3 day’ then the post is older than 3 days. The fi nal
step is to populate the email variables and use wp_mail() to send the reminder email.

 Now create the admin_init function to register the plugin option and schedule the cron job.

 < ?php
add_action(‘admin_init’, ‘boj_cron_pester_init’);

function boj_cron_pester_init(){

 //register the options in the Settings API
 register_setting(
 ‘writing’,
 ‘boj_cron_pester_options’
);

 //register the field in the Settings API
 add_settings_field(
 ‘boj_cron_pester_field’,
 ‘Enable Blog Pester?’,
 ‘boj_cron_pester_setting’,
 ‘writing’,
 ‘default’
);

 //load the option value
 $options = get_option(‘boj_cron_pester_options’);
 $boj_pester = $options[‘boj_pester’];

 // if the option is enabled and
 // not already scheduled lets schedule it

Practical Use ❘ 393

 if ($boj_pester == ‘on’ & &
 !wp_next_scheduled(‘boj_pester_cron_hook’)) {

 //schedule the event to run hourly
 wp_schedule_event(time(), ‘daily’, ‘boj_pester_cron_hook’);

 // if the option is NOT enabled and scheduled lets unschedule it
 } elseif ($boj_pester != ‘on’ & &
 wp_next_scheduled(‘boj_pester_cron_hook’)) {

 //get time of next scheduled run
 $timestamp = wp_next_scheduled(‘boj_pester_cron_hook’);

 //unschedule custom action hook
 wp_unschedule_event($timestamp, ‘boj_pester_cron_hook’);

 }

}
? >

 The plugin adds an option to the Writing
Settings page using the Settings API, as shown
in Figure 13 - 3. Enabling the blog pester option
schedules the cron job to run daily. This means
if no new blog post has been published in the
last 3 days, an email will be sent once a day
until a new blog post is published.

 The fi nal step to the plugin is creating the
check box form fi eld to enable or disable the
pester email.

 < ?php
function boj_cron_pester_setting() {

 // load the ‘boj_pester’ option from the database
 $options = get_option(‘boj_cron_pester_options’);
 $boj_pester = $options[‘boj_pester’];

 //display the option checkbox
 echo “ < input id=’boj_pester’
 name=’boj_cron_pester_options[boj_pester]’
 type=’checkbox’ “. checked($boj_pester, ‘on’, false). “ / > ”;

}
? >

 As before use the get_option() function to retrieve the pester setting value. Also use the checked
function to determine if the option is enabled.

 Now review the full blog pester plugin source.

 FIGURE 13 - 3

394 ❘ CHAPTER 13 CRON

 < ?php
/*
Plugin Name: Blog Pester Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: Sends an email after 3 days with no new posts
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

//create the custom hook for cron scheduling
add_action(‘boj_pester_cron_hook’, ‘boj_cron_pester_check’);

function boj_cron_pester_check() {
 global $wpdb;

 //retrieve latest published post date
 $sql = “ SELECT post_date FROM $wpdb- > posts
 WHERE post_status = ‘publish’ AND post_type = ‘post’
 ORDER BY post_date DESC LIMIT 1 “;
 $latest_post_date = $wpdb- > get_var($wpdb- > prepare($sql));

 if (strtotime($latest_post_date) < = strtotime(‘-3 day’)) {
 //post is older than 3 days

 //populate email values
 $email_to = ‘you@example.com’;
 $email_subject = ‘Blog Reminder’;
 $email_msg = ‘Water your blog!
 Its been three days or more since your last post’;

 //send scheduled email
 wp_mail($email_to, $email_subject, $email_msg);

 }

}

add_action(‘admin_init’, ‘boj_cron_pester_init’);

function boj_cron_pester_init(){

 //register the options in the Settings API
 register_setting(
 ‘writing’,
 ‘boj_cron_pester_options’
);

 //register the field in the Settings API
 add_settings_field(
 ‘boj_cron_pester_field’,
 ‘Enable Blog Pester?’,
 ‘boj_cron_pester_setting’,

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Practical Use ❘ 395

 ‘writing’,
 ‘default’
);

 //load the option value
 $options = get_option(‘boj_cron_pester_options’);
 $boj_pester = $options[‘boj_pester’];

 // if the option is enabled and
 // not already scheduled lets schedule it
 if ($boj_pester == ‘on’ & &
 !wp_next_scheduled(‘boj_pester_cron_hook’)) {

 //schedule the event to run hourly
 wp_schedule_event(time(), ‘daily’, ‘boj_pester_cron_hook’);

 // if the option is NOT enabled and scheduled lets unschedule it
 } elseif ($boj_pester != ‘on’ & &
 wp_next_scheduled(‘boj_pester_cron_hook’)) {

 //get time of next scheduled run
 $timestamp = wp_next_scheduled(‘boj_pester_cron_hook’);

 //unschedule custom action hook
 wp_unschedule_event($timestamp, ‘boj_pester_cron_hook’);

 }

}

function boj_cron_pester_setting() {

 // load the ‘boj_pester’ option from the database
 $options = get_option(‘boj_cron_pester_options’);
 $boj_pester = $options[‘boj_pester’];

 //display the option checkbox
 echo “ < input id=’boj_pester’
 name=’boj_cron_pester_options[boj_pester]’
 type=’checkbox’ “. checked($boj_pester, ‘on’, false). “ / > ”;

}

? >

 Code snippet boj - blog - pester.php

 The Delete Comments Plugin

 As a fi nal example, create a cron plugin with multiple options. This plugin can delete spam and
moderated comments older than the number of days set. For example, you can delete all spam
comments older than 15 days.

396 ❘ CHAPTER 13 CRON

 To start, create the admin_init function to register your plugin settings and schedule the
cron job.

 < ?php
add_action(‘admin_init’, ‘boj_cron_comment_init’);

function boj_cron_comment_init(){

 //register the options in the Settings API
 register_setting(
 ‘discussion’,
 ‘boj_cron_comment_options’
);

 //register the select field in the Settings API
 add_settings_field(
 ‘boj_cron_comment_type_field’,
 ‘Select Comments to Delete’,
 ‘boj_cron_comment_type’,
 ‘discussion’,
 ‘default’
);

 //register the text field in the Settings API
 add_settings_field(
 ‘boj_cron_days_old_field’,
 ‘Delete Comments Older Than’,
 ‘boj_cron_days_old’,
 ‘discussion’,
 ‘default’
);

 //load the option value
 $options = get_option(‘boj_cron_comment_options’);
 $boj_comments = $options[‘boj_comments’];

 // if the option is enabled and
 // not already scheduled lets schedule it
 if ($boj_comments & &
 !wp_next_scheduled(‘boj_comment_cron_hook’)) {

 //schedule the event to run daily
 wp_schedule_event(time(), ‘daily’,
 ‘boj_comment_cron_hook’);

 // if the option is NOT enabled and scheduled lets unschedule it
 } elseif (!$boj_comments & &
 wp_next_scheduled(‘boj_comment_cron_hook’)) {

 //get time of next scheduled run
 $timestamp = wp_next_scheduled(‘boj_comment_cron_hook’);

 //unschedule custom action hook

Practical Use ❘ 397

 wp_unschedule_event($timestamp, ‘boj_comment_cron_hook’);

 }

}
? >

 This plugin adds two setting fi elds to the Discussion
settings page in WordPress, as shown in Figure 13 - 4.
One fi eld is a select form fi eld to set what type of
comments to delete. The second fi eld is a text form
fi eld to set how old a comment should be before it
is deleted.

 Now create the two form fi elds you registered in the previous function.

 < ?php
function boj_cron_comment_type() {

 // load the ‘boj_comments’ option from the database
 $options = get_option(‘boj_cron_comment_options’);
 $boj_comments = $options[‘boj_comments’];

 //display the option select field
 echo ‘ < select name=”boj_cron_comment_options[boj_comments]” > ’;
 echo ‘ < option value=”” ‘.
 selected($boj_comments, ‘’, false) .’ > None < /option > ’;
 echo ‘ < option value=”spam” ‘.
 selected($boj_comments, ‘spam’, false) .
 ‘ > Spam Comments < /option > ’;
 echo ‘ < option value=”moderated” ‘.
 selected($boj_comments, ‘moderated’, false) .
 ‘ > Moderated Comments < /option > ’;
 echo ‘ < option value=”both” ‘.
 selected($boj_comments, ‘both’, false) .’ > Both < /option > ’;
 echo ‘ < /select > ’;

}
? >

 The fi rst form fi eld is a select fi eld. Use the selected() function to compare the option value saved
in WordPress to the option value, and if identical, set the option value to selected. The next fi eld is
the text form fi eld.

 < ?php
function boj_cron_days_old() {

 // load the ‘boj_days_old’ option from the database
 $options = get_option(‘boj_cron_comment_options’);
 $boj_days_old = ($options[‘boj_days_old’]) ?
 absint($options[‘boj_days_old’]) : 30;

 //display the option text field

 FIGURE 13 - 4

398 ❘ CHAPTER 13 CRON

 echo ‘ < input type=”text”
 name=”boj_cron_comment_options[boj_days_old]”
 value=”’ .esc_attr($boj_days_old). ‘” size=”3” / > Days’;

}
? >

 To set the $boj_days_old variable, use a PHP ternary operator. If the value exists, it will be
used, and if no value exists (that is, the plugin was just installed) the default value of 30 will
be used.

 Now that the setting fi elds are in place, you need to create the custom action hook and function to
delete the comments.

 < ?php
//create the custom hook for cron scheduling
add_action(‘boj_comment_cron_hook’, ‘boj_cron_delete_comments’);

function boj_cron_delete_comments() {
 global $wpdb;

 $options = get_option(‘boj_cron_comment_options’);
 $boj_comments = $options[‘boj_comments’];
 $boj_days_old = ($options[‘boj_days_old’]) ?
 $options[‘boj_days_old’] : 30;

 //verify option is enabled
 if ($boj_comments) {

 if ($boj_comments == “spam”) {
 $boj_comment_status = ‘spam’;
 } elseif ($boj_comments == “moderated”) {
 $boj_comment_status = ‘0’;
 }

 $sql = “ DELETE FROM $wpdb- > comments
 WHERE (comment_approved = ‘$boj_comment_status’)
 AND DATEDIFF(now(), comment_date) > %d”;

 if ($boj_comments == “both”) {
 $sql = “ DELETE FROM $wpdb- > comments
 WHERE (comment_approved = ‘spam’
 OR comment_approved = ‘0’)
 AND DATEDIFF(now(), comment_date) > %d”;
 }

 $wpdb- > query($wpdb- > prepare($sql, $boj_days_old));

 }

}
? >

Practical Use ❘ 399

 First, the plugin loads both option values into the two variables: $boj_comments and $boj_days_
old . If the variable $boj_comments has a value, you know the plugin settings have been enabled
by the user. Next, you need to build the query that will delete the comments based on the settings
saved the by user. The query also uses the DATEDIFF MySQL function to verify the comment is older
than the number of days set by the user. After the query has been generated, it is executed using the
 query() and prepare() functions of the wpdb class.

 When confi gured you can easily set which comments to delete and how old they must be before they
are deleted. The cron job is scheduled to run daily to check for comments to delete.

 Now review the full plugin code.

 < ?php
/*
Plugin Name: Delete Comments on a Schedule
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: Deletes spam and moderated comments older than days set
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

//create the custom hook for cron scheduling
add_action(‘boj_comment_cron_hook’, ‘boj_cron_delete_comments’);

function boj_cron_delete_comments() {
 global $wpdb;

 $options = get_option(‘boj_cron_comment_options’);
 $boj_comments = $options[‘boj_comments’];
 $boj_days_old = ($options[‘boj_days_old’]) ?
 absint($options[‘boj_days_old’]) : 30;

 //verify option is enabled
 if ($boj_comments) {

 if ($boj_comments == “spam”) {
 $boj_comment_status = ‘spam’;
 } elseif ($boj_comments == “moderated”) {
 $boj_comment_status = ‘0’;
 }

 $sql = “ DELETE FROM $wpdb- > comments
 WHERE (comment_approved = ‘$boj_comment_status’)
 AND DATEDIFF(now(), comment_date) > %d “;

 if ($boj_comments == “both”) {
 $sql = “ DELETE FROM $wpdb- > comments
 WHERE (comment_approved = ‘spam’
 OR comment_approved = ‘0’)
 AND DATEDIFF(now(), comment_date) > %d “;

400 ❘ CHAPTER 13 CRON

 }

 $wpdb- > query($wpdb- > prepare($sql, $boj_days_old));

 }

}

add_action(‘admin_init’, ‘boj_cron_comment_init’);

function boj_cron_comment_init(){

 //register the options in the Settings API
 register_setting(
 ‘discussion’,
 ‘boj_cron_comment_options’
);

 //register the select field in the Settings API
 add_settings_field(
 ‘boj_cron_comment_type_field’,
 ‘Select Comments to Delete’,
 ‘boj_cron_comment_type’,
 ‘discussion’,
 ‘default’
);

 //register the text field in the Settings API
 add_settings_field(
 ‘boj_cron_days_old_field’,
 ‘Delete Comments Older Than’,
 ‘boj_cron_days_old’,
 ‘discussion’,
 ‘default’
);

 //load the option value
 $options = get_option(‘boj_cron_comment_options’);
 $boj_comments = $options[‘boj_comments’];

 // if the option is enabled and
 // not already scheduled lets schedule it
 if ($boj_comments & &
 !wp_next_scheduled(‘boj_comment_cron_hook’)) {

 //schedule the event to run daily
 wp_schedule_event(time(), ‘daily’, ‘boj_comment_cron_hook’);

 // if the option is NOT enabled and scheduled lets unschedule it
 } elseif (!$boj_comments & &
 wp_next_scheduled(‘boj_comment_cron_hook’)) {

 //get time of next scheduled run
 $timestamp = wp_next_scheduled(‘boj_comment_cron_hook’);

 //unschedule custom action hook

Summary ❘ 401

 wp_unschedule_event($timestamp, ‘boj_comment_cron_hook’);

 }

}

function boj_cron_comment_type() {

 // load the ‘boj_comments’ option from the database
 $options = get_option(‘boj_cron_comment_options’);
 $boj_comments = $options[‘boj_comments’];

 //display the option select field
 echo ‘ < select name=”boj_cron_comment_options[boj_comments]” > ’;
 echo ‘ < option value=”” ‘.
 selected($boj_comments, ‘’, false) .’ > None < /option > ’;
 echo ‘ < option value=”spam” ‘.
 selected($boj_comments, ‘spam’, false) .
 ‘ > Spam Comments < /option > ’;
 echo ‘ < option value=”moderated” ‘.
 selected($boj_comments, ‘moderated’, false) .
 ‘ > Moderated Comments < /option > ’;
 echo ‘ < option value=”both” ‘.
 selected($boj_comments, ‘both’, false) .’ > Both < /option > ’;
 echo ‘ < /select > ’;

}

function boj_cron_days_old() {

 // load the ‘boj_days_old’ option from the database
 $options = get_option(‘boj_cron_comment_options’);
 $boj_days_old = ($options[‘boj_days_old’]) ?
 absint($options[‘boj_days_old’]) : 30;

 //display the option text field
 echo ‘ < input type=”text”
 name=”boj_cron_comment_options[boj_days_old]”
 value=”’ .esc_attr($boj_days_old). ‘” size=”3” / > Days’;

}

? >

 Code snippet boj - delete - comments.php

 SUMMARY

 Cron is a powerful tool that opens up a lot of interesting possibilities for plugin developers.
Understanding how cron works, and optimizing cron to work properly, can give your plugins a more
advanced feature set and help take your plugin to the next level!

The Rewrite API

 WHAT ’ S IN THIS CHAPTER?

 Understanding the concepts of URL rewriting

 Creating Rewrite rules in plugins

 Making a complete, new permalink structure

 Integrating a non - WordPress page with the same URL layout

 Generating a custom feed

 The Rewrite API is often considered as one of the trickiest areas in WordPress and is certainly
one of the least documented on the Web. This chapter fi rst gives you some background
information on why URLs are rewritten, then explains how to do this in WordPress, and
fi nally shows you real - life client situations in which you can leverage the Rewrite API.

 WHY REWRITE URLS

 Dynamic sites use URLs that generate content from query string parameters. These URLs
are often rewritten to resemble URLs for static pages on a site with a subdirectory hierarchy.
For example, the URL to a wiki page might be http://example.com/index
.php?title=Rewrite_URL and be actually rewritten to http://example.com/Rewrite_URL .
A request to this latter, prettier URL will be transparently rewritten by the web server to the
former URL.

 This introductory section familiarizes you with the concept of “ pretty permalinks ”
(sometimes called “ fancy URLs ” in web applications) and URL rewriting, in general and
specifi cally in WordPress.

➤

➤

➤

➤

➤

 14

404 ❘ CHAPTER 14 THE REWRITE API

 Permalink Principles

 Web applications and sites can have two completely different audiences: human readers and search
engines. Online resources should be both search engine and user friendly.

 Search Engine Friendly

 Suppose you have coded a complete online store for a client, with various products and categories.
From a programmer ’ s perspective, each URL of the site would be similar to http://example.com/
shop.php?action=display & category=12 & subcat=4 . This URL easily maps to variables that can
then typically fetch information from a database or perform actions.

 The problem with that URL is that search engines may index it or just index http://example.com/
shop.php , which may not even return something intelligible.

 User Friendly

 As a human user, you want a URL to be easy to understand and, if possible, memorable. For
instance, consider the two URLs that would actually display the same product page:

 example.com/shop.php?action=display & category=123 & subcat=7 & product_id=43

 example.com/shop/liquor/whisky/lagavulin/

 The fi rst URL is long and cryptic, whereas the second one is shorter and self - explanatory.

 Even when URLs are not obscure like the fi rst one, having a directory - like structure makes it much
more understandable. The following two URLs would, for instance, point to the same page on a
WordPress powered site:

 http://example.com/index.php?year=2011 & paged=6

 http://example.com/2011/page/6/

 Apache ’ s mod_rewrite

 Web server developers have imagined ways to rewrite URLs, from something programmatically
convenient (shop.php?product=43) to something user and search engine friendly (/buy/ardbeg/).
This section highlights how this is done with the Apache web server, but other web server software
(Lighttpd, Nginx, IIS, and so on) all have similar techniques.

 The key module for permalinks in Apache is mod_rewrite , a module that enables defi ning rewrite
rules typically found in the .htaccess fi le. A classic rewrite rule consists in the following code block:

 < IfModule mod_rewrite.c >
RewriteEngine on
RewriteRule [pattern] [substitution] [optional flag(s)]
 < /IfModule >

 The pattern and substitution parameters can use regular expressions. Consider for instance the
following rewrite rule:

RewriteRule /buy/([^/]+)/ /shop.php?product=$1 [L]

➤

➤

➤

➤

 Now, when a client requests a URL that starts with /buy/ followed several times by a character that
is not a slash ([^/]+) and then a slash, the web server internally redirects the request to /shop.php
and passes the parameter product with the value caught inside the parentheses of the pattern.

 If you want to learn more about mod_rewrite and URL rewriting in a non - WordPress environment,
you can read a thorough guide at http://articles.sitepoint.com/article/guide-
url-rewriting .

 URL Rewriting in WordPress

 A typical WordPress URL such as /2011/03/hello - world/ doesn ’ t match an actual physical path
on the web server. (No “ hello - world ” directory is in a “ 03 ” directory, which is in a “ 2011 ” folder.)
At some point, the URL was therefore rewritten.

 If your WordPress setup runs on a capable server (usually Apache with mod_
rewrite), you can enable “ Pretty Permalinks ” to benefi t from the user and
search engine - friendly URLs, such as example.com/2011/03/hello - world/
instead of example.com/index.php?p=1 . Read more about this beginner feature
on the Codex at http://codex.wordpress.org/Using_Permalinks .

 When installed, WordPress creates an .htaccess fi le in its root directory that contains the
following block:

 < IfModule mod_rewrite.c >
RewriteEngine On
RewriteBase /
RewriteRule ^index\.php$ - [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php [L]
 < /IfModule >

 This mod_rewrite directive contains a conditional rewrite rule, which tells the following to the web
server:

 1. If the request is index.php , redirect to this fi le and don ’ t try to match any other rewrite
rule. (The [L] fl ag stands for Last.)

 2. If the request is not a fi le (%{REQUEST_FILENAME} ! - f). . .

 3. . . . and if the request is not a directory (%{REQUEST_FILENAME} ! - d) . . .

 4. . . . then rewrite the URL to index.php and don ’ t try to apply another rewrite rule.

 This .htaccess directive redirects requests such as /2011/page/6/ to /index.php . This means that
practically all requests in the frontend area of a WordPress site are internally redirected to index
.php , which then has to guess how to interpret the request. Enter the Rewrite API.

Why Rewrite URLs ❘ 405

406 ❘ CHAPTER 14 THE REWRITE API

 HOW WORDPRESS HANDLES QUERIES

 You now know that when a visitor loads a WordPress powered page, the fi le actually loaded is
 index.php. For instance if you request http://example.com/2011/03/hello-world/ , WordPress
internally redirects this URL into http://example.com/index.php?p=1 and eventually fetches from
the database data for the post with ID 1. How is the translation from a URL to a MySQL query done?

 The following section explains what magic happens when the web server displays a WordPress
powered page and how plugins can interfere with this process.

 Overview of the Query Process

 You need to understand how and when events occur within WordPress because this can highlight
the parts where your plugin can interfere with the process. You can now dissect the fl ow of events
when a page is requested and determine which fi les are included and which functions are called:

 1. The root index.php fi le is loaded, as per the .htaccess rewrite rule, and loads the fi le
 wp - blog - header.php .

 2. This fi le loads wp - load.php , which searches and includes wp - config.php , which will
in turn load wp - settings.php that includes the function fi les, active plugins, and then
pluggable functions.

 3. Two new objects are instantiated: $wp_query and $wp_rewrite . You learn about these later.

 4. A few other fi les are loaded, such as translation fi les and the theme ’ s functions fi le.

 If you have not done it already, read the source of wp - settings.php : This fi le
explains the fl ow of initial events, of which you ’ ve read an overview in Chapter 1,
 “ An Introduction to Plugins. ”

 WordPress is now fully loaded and plugins can start interacting, but it doesn ’ t know yet
what to display and what page has been requested. Back to wp - blog - header.php : After
everything is loaded, this fi le calls the function wp() , which starts the magic — the function
 WP::parse_request() .

 The function parse_request() from the WP class (found in wp - includes/classes.php) prepares
everything WordPress needs to know to understand the page request:

 5. This function fetches the list of all the registered rewrite rules. Just as previously explained
with mod_rewrite , it consists in a list of pattern = > replacement pairs, to tell WordPress
that /category/tutorials/page/2/ actually means /index.php?category_name
=tutorials & paged=2 .

 6. The function goes through each rewrite rule, compares it to the requested URL, and tries to
fi nd a match. If no match is eventually found, this is a 404 error.

 At this point, if the page is not a 404 error, WordPress now has a permalink translation pattern
with query variable placeholders, such as index.php?category_name= < string > & paged= < number > .
It now needs to get the values of these query variables.

 7. The function parse_request() now obtains the list of the registered query variables, and
for each variable checks if a value has been set by the permalink pattern, by POST , or by
 GET submission.

 8. Now, WordPress knows everything it needs to convert the initial URL request into a proper
MySQL database query, get post data, load the required theme template, and display the
requested page.

 Two expressions may have caught your attention in the preceding fl ow description: “ registered
rewrite rules ” and “ registered query variables. ” If at some point these are registered, maybe there ’ s a
way for plugins to modify them? Of course there is!

 The rewrite Object

 The $wp_rewrite object, previously introduced, is the fi rst object you mess with when playing with
the Rewrite API. Have a look at its content: Using a simple print_r($wp_rewrite) displays the
following information:

WP_Rewrite Object (
...
[permalink_structure] = > /%year%/%postname%/
[use_trailing_slashes] = > 1
...
[rules] = > Array (
 [category/(.+?)/?$] = > index.php?category_name=$matches[1]
 [tag/([^/]+)/page/?([0-9]{1,})/?$] = > index.php?tag=$matches[1] & paged=$matches[2]
 [tag/([^/]+)/?$] = > index.php?tag=$matches[1]
 [(.+?)/trackback/?$] = > index.php?pagename=$matches[1] & tb=1
 ...
)
[endpoints] = > Array ()
...
)

 Some of the preceding properties should already be familiar to you: The rules array contains the
list of all registered rewrite rules. The $rewrite object contains all the information related to
the permalink structure of your site, such as the complete set of rewrite rules that were fetched
at the previous fl ow or the list of registered feeds and their URL structure (/feed/rss2/ for instance).

 The query Object

 Similarly and before you learn how to alter it, have an inner look at the $wp_query object, with a
 print_r() call when requesting the page /2011/hello - world/ on a WordPress powered site:

WP_Query Object (
 [query_vars] = > Array (
 [page] = > 0
 [year] = > 2011
 [month] = > 03
 [pagename] = >
 [category_name] = >

How WordPress Handles Queries ❘ 407

408 ❘ CHAPTER 14 THE REWRITE API

 [name] = > hello-world
 ...
)
 ...
 [is_single] = > 1
 [is_preview] = >
 [is_page] = >
 ...
 [query] = > Array (
 [year] = > 2011
 [name] = > hello-world
)
 ...
)

 The $wp_query object defi nes the list of authorized query variables that can be matched by the
rewrite rules and collects all the information needed to translate the initial page request into a
MySQL query.

 What Plugins Can Do

 Using functions of the Rewrite API, plugins can interfere with the $wp_rewrite and $wp_query
objects, for instance to perform the following actions as you will learn in the next section,
 “ Practical Uses ” :

 Create your own rewrite rules, and defi ne how WordPress will interpret them.

 Integrate a WordPress site with non - WordPress pages and keep a consistent URL pattern
and site layout.

 Create a custom feed with a custom feed permalink.

 Now that you know the underlying concepts of the Rewrite API, it ’ s time for you to write actual code.

 PRACTICAL USES

 You will now dive into practical examples of use and code for real life situations. You will learn to:

 Leverage the Rewrite API to easily generate an arbitrary number of sub pages under the
hierarchy of one parent page.

 Defi ne a custom permalink structure to easily integrate non - WordPress content into a
WordPress powered site.

 Register new services with URL endpoints, for instance to display QR codes.

 Generate feeds for any custom content, such as the last uploaded images.

 Rewriting a URL to Create a List of Shops

 You ’ ve just redesigned the site of your latest client, a big retail company with dozens of stores across
the country. You now have to list these stores within their web site. How can you do this?

➤

➤

➤

➤

➤

➤

➤

Practical Uses ❘ 409

 Option 1: Manually create a page for each store. Ewww. No fun.

 Option 2: Create one page at http://example.com/shops/ and automatically make
WordPress understand that http://example.com/shops/somecity/ needs to display the
information page for that store located in that particular city. Much more fun!

 Creating the rewrite Rule

 The function that creates a new rewrite rule is add_rewrite_rule() , which needs two arguments,
similar to how mod_rewrite works: a string defi ning the URL pattern to be matched and another
string for the URL replacement. In your Rewrite Rules Shop plugin, write the following:

 < ?php
// Add rules
add_action(‘init’, ‘boj_rrs_add_rules’);
function boj_rrs_add_rules() {
 add_rewrite_rule(‘stores/?([^/]*)’,
 ‘index.php?pagename=stores & store_id=$matches[1]’, ‘top’);
}
? >

 This internally redirects all requests to the URL stores/something/ to the page Stores with an
additional parameter, that is, index.php?pagename=stores & store_id=something .

 Note that you passed a third parameter to add_rewrite_rule() , ‘top ’ , to specify that this list will
be added before all rewrite rules, to make sure it is matched early and before built - in rules.

 Registering the query Variable

 Now you need to add this additional parameter store_id to the list of registered query variables:

 < ?php
// Add the store_id var so that WP recognizes it
add_filter(‘query_vars’, ‘boj_rrs_add_query_var’);
function boj_rrs_add_query_var($vars) {
 $vars[] = ‘store_id’;
 return $vars;
}
? >

 So far, you have modifi ed the list of defi ned rewrite rules held in the $wp_rewrite object and the list
of authorized query variables, kept in the $wp_query object. You ’ re almost done!

 Flushing the Rewrite Rules

 The trick with rewrite rules is that when they are modifi ed (if you add, modify, or delete one), you
need to tell WordPress to refresh and rebuild the list. To do so, you can either visit the Permalink

➤

➤

410 ❘ CHAPTER 14 THE REWRITE API

Options page in the admin area or use the function flush_rewrite_rules() . You can do this on
plugin activation and plugin deactivation:

 < ?php

// Add the rewrite rule and flush on plugin activation
register_activation_hook(__FILE__, ‘boj_rrs_activate’);
function boj_rrs_activate() {
 boj_rrs_add_rules();
 flush_rewrite_rules();
}

// Flush when deactivated
register_deactivation_hook(__FILE__, ‘boj_rrs_deactivate’);
function boj_rrs_deactivate() {
 flush_rewrite_rules();
}
? >

 Note the best practices when adding new rewrite rules:

 On plugin activation, add the rule and fl ush.

 On init , also add the rule, in case another plugin fl ushes the rules.

 Don ’ t fl ush rules on every page request (for example hooking in init); that would cause
unnecessary overhead.

 On plugin deactivation, fl ush the rules again to clear the list.

 The Functional Plugin

 You can now review the whole plugin.

 < ?php
/*
Plugin Name: List Stores
Plugin URI: http://example.com/
Description: A rewrite rule to list stores as children of the Stores page
Version: 1.0
Author: Ozh
Author URI: http://wrox.com
*/

// Add the rewrite rule and flush on plugin activation
register_activation_hook(__FILE__, ‘boj_rrs_activate’);
function boj_rrs_activate() {
 boj_rrs_add_rules();
 flush_rewrite_rules();
}

// Flush when deactivated
register_deactivation_hook(__FILE__, ‘boj_rrs_deactivate’);

➤

➤

➤

➤

Practical Uses ❘ 411

function boj_rrs_deactivate() {
 flush_rewrite_rules();
}

// Add the rewrite rule
add_action(‘init’, ‘boj_rrs_add_rules’);
function boj_rrs_add_rules() {
 add_rewrite_rule(‘stores/?([^/]*)’,
 ‘index.php?pagename=stores & store_id=$matches[1]’, ‘top’);
}

// Add the store_id var so that WP recognizes it
add_filter(‘query_vars’, ‘boj_rrs_add_query_var’);
function boj_rrs_add_query_var($vars) {
 $vars[] = ‘store_id’;
 return $vars;
}
? >

 Code snippet boj_rewrite_shops/plugin.php

 That ’ s it for the plugin part: Now http://example.com/stores/denver/ redirects to the Stores
WordPress parent page with the additional internal parameter store_id . You can now create that
page and do a simple theme modifi cation.

 Creating the Shops Page that Can Generate Its Children

 The additional internal parameter store_id is a query variable, which value can be read using the
function get_query_var() , as following:

 < ?php
// Get store id
$store = get_query_var(‘store_id’);
? >

 You can now create a regular WordPress page using the Add New Page admin page, but there is a
twist: This page uses a page template.

 When WordPress displays a Page (as opposed to a Post), it looks for the template fi le page.php
within the current theme directory. You can set individual pages to use a more specifi c template
fi le stores.php , simply by creating a new fi le within the theme directory and starting it as
follows:

 < ?php
/*
Template Name: Store
*/
? >

412 ❘ CHAPTER 14 THE REWRITE API

 Now in the Page write interface, within the Page Attribute meta
box, you will be given the option to select this page template in the
drop - down, as shown in Figure 14 - 1.

 The page template code and layout depend on how your theme is
coded, for instance how < div > elements are used and named. In
this example you can assume the client ’ s site is running WordPress ’
default theme, TwentyTen, so your store.php page template will
have the same structure as the original page.php :

 < ?php
/*
Template Name: Store
*/
? >

 < ?php get_header(); ? >

 < div id=”container” >
 < div id=”content” role=”main” >

 < /div > < !-- #content -- >
 < /div > < !-- #container -- >

 < ?php get_sidebar(); ? >
 < ?php get_footer(); ? >

 Within the <div id= “ content ” > now resides the code that either lists all stores (if http://example
.com/stores/ is requested) or displays a specifi c store information (when the requested page is for
instance http://example.com/stores/miami/). To do so, you can simply do the following:

 Defi ne an array of store data: store name, manager name, address, and phone number for
every existing store.

 Check the value of get_query_var(‘ store_id ’) and if it matches the ID of an existing
store, display data for that given store.

 If get_query_var(‘ store_id ’) doesn ’ t match an existing store or is empty, list all stores.

 The complete page template store.php you can save into the theme directory follows:

 < ?php
/*
Template Name: Store
*/
? >

 < ?php get_header(); ? >

 < div id=”container” >
 < div id=”content” role=”main” >
 < ?php

 // define all stores
 $stores = array(

➤

➤

➤

 FIGURE 14 - 1

Practical Uses ❘ 413

 ‘milwaukee’ = > array(
 ‘name’ = > “Milwaukee Store”,
 ‘manager’ = > ‘Richie Cunningham’,
 ‘address’ = > ‘565 N Clinton Drive, Milwaukee’,
 ‘phone’ = > ‘555-31337-1337’
),
 ‘springfield’ = > array(
 ‘name’ = > “Springfield Store”,
 ‘manager’ = > ‘Bart Simpson’,
 ‘address’ = > ‘Evergreen Terrace, Springfield’,
 ‘phone’ = > ‘555-666-696969’
),
 ‘fairview’ = > array(
 ‘name’ = > “Fairview Store”,
 ‘manager’ = > ‘Susan Mayer’,
 ‘address’ = > ‘4353 Wisteria Lane, Fairview’,
 ‘phone’ = > ‘4-8-15-16-23-42’
)
);

 // Get store id
 $store = get_query_var(‘store_id’);

 // if store exists, display info
 if(array_key_exists($store, $stores)) {

 extract($stores[$store]);
 echo “ < p > Store: $name < /p > ”;
 echo “ < p > Manager: $manager < /p > ”;
 echo “ < p > Location: $address < /p > ”;
 echo “ < p > Contact us: $phone < /p > ”;

 // if store does not exist, list them all
 } else {

 // Get current page URL
 global $post;
 $page = untrailingslashit(get_permalink($post- > ID));

 echo ‘ < p > Our stores: < /p > ’;
 echo ‘ < ul > ’;
 foreach($stores as $store = > $info) {
 $name = $info[‘name’];
 echo “ < li > < a href=’$page/$store/’ > $name < /a > < /li > \n”;
 }
 echo ‘ < /ul > ’;
 }

 ? >
 < /div > < !-- #content -- >
 < /div > < !-- #container -- >

 < ?php get_sidebar(); ? >
 < ?php get_footer(); ? >

 Code snippet boj_rewrite_shops/store.php

414 ❘ CHAPTER 14 THE REWRITE API

 You can now create a regular page within WordPress, using this page template, as shown in
Figure 14 - 2.

 FIGURE 14 - 3

 FIGURE 14 - 2

 On the front side of the site, you can now access the main Stores page, located at http://example
.com/stores/ , which lists all stores and links to each individual store page, for instance http://
example.com/stores/fairview/ as shown in Figure 14 - 3:

Practical Uses ❘ 415

 Creating a New Permalink Structure and Integrating

Non - WordPress Pages

 In the previous plugin, you created a WordPress page to handle URLs rewritten to it. You can now
create other rewrite rules using a different approach.

 The client you ’ re now working with already has a product listing script and wants you to integrate
it in its new web site you created for them. You can make WordPress handle all requests to http://
example.com/shop/something/ and use the existing listing script.

 Creating a rewrite Tag

 In the Permalink Options settings page, you can defi ne custom permalinks using tags such as
 %year% or %monthnum% . You can now defi ne a new tag %product% and use it in the permalink
structure of the site:

 < ?php
// Create new tag %product% and handle /shop/%product% URLs
add_action(‘init’, ‘boj_products_rewrite’);
function boj_products_rewrite() {
 add_rewrite_tag(‘%product%’, ‘([^/]+)’);
 add_permastruct(‘product’, ‘shop’ . ‘/%product%’);
}
? >

 The fi rst function call, add_rewrite_tag() , defi nes the tag and what can match it. Here, the
tag %product% matches one or more characters that are not a forward slash, using the regular
expression ([^/]+) . This function call also registers a new query variable with the same name
 product .

 The tag defi ned, the function add_permastruct() , describes a new permalink structure, with two
parameters: an arbitrary name for the structure and how URLs and tags should be formed.

 Now look at the rewrite rules that have been added to the $wp_rewrite object and its rules
property:

[shop/([^/]+)/feed/(feed|rdf|rss|rss2|atom)/?$]
 = > index.php?product=$matches[1] & feed=$matches[2]
[shop/([^/]+)/(feed|rdf|rss|rss2|atom)/?$]
 = > index.php?product=$matches[1] & feed=$matches[2]
[shop/([^/]+)/page/?([0-9]{1,})/?$]
 = > index.php?product=$matches[1] & paged=$matches[2]
[shop/([^/]+)/?$]
 = > index.php?product=$matches[1]

 Example URLs matching these rewrite rules could be the following:

 http://example.com/shop/something/feed/rss2/

 http://example.com/shop/stuff/atom/

 http://example.com/shop/thing/page/3/

 http://example.com/shop/item/

➤

➤

➤

➤

416 ❘ CHAPTER 14 THE REWRITE API

 These URLs can internally redirect to the following:

 http://example.com/index.php?product=something & feed=rss2

 http://example.com/index.php?product=stuff & feed=atom

 http://example.com/index.php?product=thing & paged=3

http://example.com/index.php?product=item

 Congratulations: Using just two function calls, you created a complete, new permalink structure
that can handle pagination and feed generation!

 Displaying the Shop Products

 Now that requests to /shop/something/ successfully redirect to /index.php?product=something ,
you can integrate the existing product listing script. Here the actual script integration is commented
and replaced with a simple output:

 < ?php
// If query var product as a value, include product listing
add_action(‘template_redirect’, ‘boj_products_display’);
function boj_products_display() {
 if ($product = get_query_var(‘product’)) {
 // include(‘display_product.php’);
 echo “Here goes information for product < strong > $product < /strong > ”;
 exit;
 }
}
? >

 By hooking into the early action ‘template_redirect’ , you can hijack the normal page display
and, if the query variable product (registered by the previous add_rewrite_tag() function call)
has a value, include the shop listing script. Don ’ t forget to use exit() so that WordPress does not
try to further handle the page display and, unable to fi nd a post, output a 404 error.

 To test for pagination or feed generation, you can also check the values of get_query_
var(‘ paged ’) and get_query_var(‘ feed ’) .

 Flush the rewrite rules when they ’ re created the fi rst time, and your plugin is now complete and
functional.

 The Functional Plugin

 You can now review the whole plugin.

 < ?php
/*
Plugin Name: Products Permalink Structure
Plugin URI: http://example.com/
Description: Create a whole permalink structure
Version: 1.0
Author: Ozh

➤

➤

➤

➤

Practical Uses ❘ 417

Author URI: http://wrox.com
*/

// Add permalink structure and flush on plugin activation
register_activation_hook(__FILE__, ‘boj_products_activate’);
function boj_products_activate() {
 boj_products_rewrite();
 flush_rewrite_rules();
}

// Flush on plugin deactivation
register_deactivation_hook(__FILE__, ‘boj_products_deactivate’);
function boj_products_deactivate() {
 flush_rewrite_rules();
}

// Create new tag %product% and handle /shop/%product% URLs
add_action(‘init’, ‘boj_products_rewrite’);
function boj_products_rewrite() {
 add_rewrite_tag(‘%product%’, ‘([^/]+)’);
 add_permastruct(‘product’, ‘shop’ . ‘/%product%’);
}

// If query var product as a value, include product listing
add_action(‘template_redirect’, ‘boj_products_display’);
function boj_products_display() {
 if ($product = get_query_var(‘product’)) {
 // include(‘display_product.php’);
 echo “searching for product $product ?”;
 exit;
 }
}

 Code snippet boj_rewrite_products/plugin.php

 Adding an Endpoint and Altering Output Format

 A URL endpoint defi nes a new service, like /trackback/ on WordPress singular URLs. You can
code a plugin that adds a “ format ” endpoint, so the user will add /format/XXX/ to any URL and
turn your site into a fun API:

 Appending /format/qr/ to URLs displays the QR code of the current URL.

 /format/json/ on a singular URL (a post, a page) returns the post data as a JSON encoded
string.

➤

➤

 A QR Code, also sometimes called fl ash code in a mobile application, is a black -
 and - white square pattern readable by QR scanners, mobile phones, and
smartphones with a camera. It contains encoded information, which can be
text, URL, or other data such as a phone number. Common in Japan, QR Codes
are being adopted by more and more mainstream brands.

418 ❘ CHAPTER 14 THE REWRITE API

 Defi ning the Endpoint

 To defi ne the endpoint for your service, you can use the function add_rewrite_endpoint() ,
which needs two parameters: a string for the syntax of the endpoint (here format) and a number to
identify on which “ places, ” that is types of URLs, the endpoint will be added.

 The fi le wp - includes/rewrite.php defi nes several constants to match “ places ” where endpoint
will be added. For example with EP_CATEGORIES (which has a value of 512), you can match only
URLs under the /category/ permalink, such as http://example.com/category/tshirts/
format/qr/ .

 Following is a complete list of constants.

 CONSTANT VALUE, FOR INFORMATION PLACES

 EP_NONE 0 None

 EP_PERMALINK 1 Permalinks

 EP_ATTACHMENT 2 Attachment pages

 EP_DATE 4 Date pages

 EP_YEAR 8 Year pages

 EP_MONTH 16 Month pages

 EP_DAY 32 Day pages

 EP_ROOT 64 Root page

 EP_COMMENTS 128 Comment pages

 EP_SEARCH 256 Search pages

 EP_CATEGORIES 512 Category pages

 EP_TAGS 1024 Tag pages

 EP_AUTHORS 2048 Author pages

 EP_PAGES 4096 “ Pages ” pages

 EP_ALL 8191 Everything

 For instance, if you want to add an endpoint to author pages, you can write add_rewrite_
endpoint(‘ something ’ , 2048) or add_rewrite_endpoint(‘ something ’ , EP_AUTHORS) .

 If you want to append an endpoint to both author pages and search pages, add the two place values:
 add_rewrite_endpoint(‘ something ’ , EP_AUTHORS + EP_SEARCH) .

Practical Uses ❘ 419

 In your plugin add the endpoint to all URLs:

 < ?php
// Add the endpoint rewrite rules
add_filter(‘init’, ‘boj_ep_add_rules’);
function boj_ep_add_rules() {
 add_rewrite_endpoint(‘format’, EP_ALL);
}
? >

 This single function call registers /format/ as a valid endpoint to all URLs, and registers a new
query variable, also named format . This enables URLs such as /tag/tshirt/format/qr/ to be
internally rewritten to /index.php?tag=tshirt & format=qr .

 You can now check the value of the query var format and modify the page output:

 < ?php
// Handle the custom format display if needed
add_filter(‘template_redirect’, ‘boj_ep_template_redirect’);
function boj_ep_template_redirect() {
 switch(get_query_var(‘format’)) {
 case ‘qr’:
 boj_ep_display_qr();
 exit;
 case ‘json’:
 if(is_singular()) {
 boj_ep_display_json();
 exit;
 }
 }
}
? >

 To fi nalize your plugin, you now need to add the following functions or features:

 boj_ep_display_json() encodes the global variable $post using json_encode() and
displays it.

 boj_ep_display_qr() determines the current URL being visited, fetches an image from
Google ’ s QR Code API using functions covered in the HTTP API chapter, and then displays it.

 Activation and deactivation hooks add the endpoint and fl ush the rewrite rules.

 The Functional Plugin

 You can now review the whole plugin.

 < ?php
/*
Plugin Name: Format endpoint
Plugin URI: http://example.com/
Description: Add a /format/ endpoint to all URLs
Version: 1.0
Author: Ozh

➤

➤

➤

420 ❘ CHAPTER 14 THE REWRITE API

Author URI: http://wrox.com
*/

// Add permalink structure and flush on plugin activation
register_activation_hook(__FILE__, ‘boj_ep_activate’);
function boj_ep_activate() {
 boj_ep_add_rules();
 flush_rewrite_rules();
}

// Flush on plugin deactivation
register_deactivation_hook(__FILE__, ‘boj_ep_deactivate’);
function boj_ep_deactivate(){
 flush_rewrite_rules();
}

// Add the endpoint rewrite rules
add_filter(‘init’, ‘boj_ep_add_rules’);
function boj_ep_add_rules() {
 add_rewrite_endpoint(‘format’, EP_ALL);
}

// Handle the custom format display if needed
add_filter(‘template_redirect’, ‘boj_ep_template_redirect’);
function boj_ep_template_redirect() {
 switch(get_query_var(‘format’)) {
 case ‘qr’:
 boj_ep_display_qr();
 exit;
 case ‘json’:
 if(is_singular()) {
 boj_ep_display_json();
 exit;
 }
 }
}

// Display JSON information about the post
function boj_ep_display_json() {
 global $post;
 // Tell the browser this is a JSON file
 header(‘Content-type: application/json’);
 echo json_encode($post);
 exit;
}

// Display a QR code
function boj_ep_display_qr() {
 // get current location and strip /format/qr/ from the URL
 $url = (is_ssl() ? ‘https://’ : ‘http://’)
 . $_SERVER[‘HTTP_HOST’]
 . preg_replace(‘!/format/qr/$!’, ‘/’, $_SERVER[‘REQUEST_URI’]);

Practical Uses ❘ 421

 // encode URL so it can be used for the QR code query
 $url = urlencode($url);

 // Google QR code URL:
 $qr = “http://chart.apis.google.com/chart?chs=150x150 & cht=qr & chl=”
 . $url . “ & chld=L|0”;

 // Get the image generated by Google
 $image = wp_remote_retrieve_body(wp_remote_get($qr));

 // Display QR code image
 header(‘Content-Type: image/png’);
 echo $image;
 exit;
}
? >

 Code snippet boj_endpoints_format/plugin.php

 Adding a Custom Feed for the Latest Uploaded Images

 By default WordPress generates several feed formats (RSS, RSS2, and ATOM) and their permalink
structure is defi ned in the $wp_rewrite object. For example, out - of - the - box, you can display the
following:

 An Atom feed of all the posts: http://example.com/feed/atom/

 An RSS feed of posts tagged “ beer ” : http://example.com/tag/beer/feed/rss/

 An RDF feed of the comments to a given post: http://example.com/2011/
hello-world/feed/rdf/

 With a plugin you can defi ne your own feeds and what they output, for instance a feed of the latest
images uploaded within WordPress, available at http://example.com/feed/img/ .

 Registering the New Feed

 The Rewrite API function you use to register a new feed is add_feed() , which needs two arguments:
the feed name such as “ atom ” or, here, img , and the callback function that can output content.

 < ?php

// Register the feed
add_filter(‘init’, ‘boj_addfeed_add_feed’);
function boj_addfeed_add_feed() {
 add_feed(‘img’, ‘boj_addfeed_do_feed’);
}
? >

 From now on, the URL http://example.com/feed/img/ will be handled by the callback function
 boj_addfeed_do_feed() . Because images in WordPress are actually the custom post type
 “ attachment ” as covered in Chapter 11, “ Extending Posts, ” you can easily build your own $post

➤

➤

➤

422 ❘ CHAPTER 14 THE REWRITE API

and Loop to display the latest images in an XML ATOM manner. As usual fl ush the rules on
activation and deactivation, and the plugin is complete.

 The Functional Plugin

 You can now review the whole plugin.

 < ?php
/*
Plugin Name: Image feed
Plugin URI: http://example.com/
Description: Add a feed for latest uploaded images
Version: 1.0
Author: Ozh
Author URI: http://wrox.com
*/

// Add permalink structure and flush on plugin activation
register_activation_hook(__FILE__, ‘boj_addfeed_activate’);
function boj_addfeed_activate() {
 boj_addfeed_add_feed();
 flush_rewrite_rules();
}

// Flush on plugin deactivation
register_deactivation_hook(__FILE__, ‘boj_addfeed_deactivate’);
function boj_addfeed_deactivate() {
 flush_rewrite_rules();
}

// Register the feed
add_filter(‘init’, ‘boj_addfeed_add_feed’);
function boj_addfeed_add_feed() {
 add_feed(‘img’, ‘boj_addfeed_do_feed’);
}

// Callback function: echo the feed
function boj_addfeed_do_feed($in) {

 // Make custom query to get latest attachments
 query_posts(array(‘post_type’ = > ‘attachment’, ‘post_status’ = > ‘inherit’));

 // Send content header and start ATOM output
 header(‘Content-Type: application/atom+xml’);
 echo ‘ < ?xml version=”1.0” encoding=”’.get_option(‘blog_charset’).’”?’.’ > ’;
 ? >

 < feed xmlns=”http://www.w3.org/2005/Atom” >
 < title type=”text” > Latest images on < ?php bloginfo_rss(‘name’); ? > < /title >
 < ?php
 // Start the Loop
 while (have_posts()) : the_post();
 ? >
 < entry >

 < title > < ![CDATA[< ?php the_title_rss() ? >]] > < /title >
 < link href=” < ?php the_permalink_rss() ? > ” / >
 < published > < ?php echo get_post_time(‘Y-m-d\TH:i:s\Z’); ? > < /published >
 < content type=”html” > < ![CDATA[< ?php the_content() ? >]] > < /content >
 < /entry >
 < ?php
 // End of the Loop
 endwhile ;
 ? >
 < /feed >

 < ?php
}
? >

 Code snippet boj_addfeed/plugin.php

 SUMMARY

 The goal of this chapter was to demystify the area of URL rewriting in WordPress, frequently
considered to be a complicated subject. With the concrete plugin examples crafted here, you can
now make your own way in this fi eld. The Rewrite API will be invaluable, especially when you will
have to integrate into WordPress existing content and existing scripts, which can happen frequently
with clients who already have a presence on the web.

 The Rewrite API is often deemed hard to understand because it ’ s less used and known than most
other APIs, and indeed it ’ s not the API you will employ on a daily basis. Knowing what it can do
and mastering it can defi nitely be a plus over your competitors!

Summary ❘ 423

Multisite

 WHAT ’ S IN THIS CHAPTER?

 Using Multisite versus standard WordPress

 Understanding Multisite terminology

 Exploring common Multisite functions

 Switching between sites in a network

 Managing how to aggregate content across sites

 Working with network and site options

 Understanding users and site roles

 Determining database schema diff erences

 Installing and confi guring Multisite

 WordPress Multisite, formerly WordPress MU or Multiuser, is a powerful feature included
in WordPress. Multisite enables you to create multiple sites with a single install of WordPress.
This makes it easy for anyone running WordPress to create and administer a network of
sites. This network can enable open user and site registration, or be a closed network where
only administrators can create new sites and users.

 Each site in your Multisite network can also run separate plugins, offer different themes,
store unique content, and have a completely separate user base. It doesn ’ t take much to realize
how powerful Multisite is in WordPress. Because of this, as a plugin developer you need to
understand what features are available when working with Multisite in WordPress.

➤

➤

➤

➤

➤

➤

➤

➤

➤

 15

426 ❘ CHAPTER 15 MULTISITE

 DIFFERENCES

 WordPress Multisite is included in every install of WordPress since version 3.0. Multisite, however,
is not enabled by default. There are some key differences between standard WordPress and
Multisite, so you need to understand those differences when developing plugins for WordPress.

 WordPress Versus Multisite Network

 By default when you install WordPress you install a single site. Since WordPress 3.0, Multisite
(sometimes shortened to WPMS) has been included in WordPress. WordPress Multisite enables
you to run multiple sites in a single installation of WordPress. When enabling Multisite you have
a choice on how sites will be viewed in WordPress: either as subdomains (site1.example.com)
or subdirectories (example.com/site1). You can even map domain names to each site (example
.com) so that visitors to your sites would have no idea they are all powered by a single install of
WordPress.

 As you can imagine this is an extremely powerful feature in WordPress. There is no limit to the
number of sites WordPress can run; the only restriction is the resources available on your hosting
server. WordPress.com is actually a Multisite install of WordPress and powers millions of sites
on the Internet. For example, WordPress.com hosts sites ranging from a single blogger to
TechCrunch.com.

 Understanding Multisite Terminology

 You need to understand the terminology used in WordPress Multisite. Two important terms in
Multisite are network and site. A network is the entire Multisite installation, or the network. A site
is a single site inside the network. Therefore WordPress Multisite is a network of sites.

 When developing plugins for Multisite, you need to determine whether you want to work across
the network or in a single site. For example, you may want to retrieve posts from a single site in the
network. Alternatively, you may want to create a networkwide option for your plugin.

 All sites in your Multisite network have a status. The status is important and can determine whether
the site is viewable by the public. Following is a list of the available site statuses in Multisite:

 Public — Site is public if privacy is set to enable search engines.

 Archived — Site has been archived and is not available to the public.

 Mature — Site is fl agged as mature.

 Spam — Site is considered spam and is not available to the public.

 Deleted — Site is fl agged for deletion and is not available to the public.

 The only two statuses that don ’ t remove the site from public viewing are Public and Mature .
 Mature can be used if you want to allow mature sites in your network, but need a way to warn
users prior to them viewing the content. Public is based on the privacy settings and whether search
engines are allowed to index the site.

➤

➤

➤

➤

➤

Enabling Multisite in WordPress ❘ 427

 Advantages of Multisite

 Running Multisite for your websites offers many advantages. The most obvious advantage is you
have only a single install of WordPress to administer. This makes life much easier when updating
WordPress, plugins, and themes. If you have a WordPress Multisite network of 50 sites, and a
plugin update is released, you need to update only that plugin once, and it will affect all sites in
your network. If each site were a separate install of WordPress, you would have to update the
plugin 50 times.

 Another advantage to Multisite is the ease with which you can aggregate content across your
network. For example, if you have 50 sites in your network, you could easily aggregate all those
posts to your main blog to showcase your network of sites. If the sites were separate installs of
WordPress, it would take quite a bit more work to aggregate that content.

 Administering a network of sites in Multisite is also versatile. You can easily limit disk space usage
on each site. You can also dictate what fi le type extensions are allowed for uploading along with fi le
size limits. You can even lock down plugins and themes from being administered, or even used, by
the users in your network.

 ENABLING MULTISITE IN WORDPRESS

 Installing WordPress Multisite is actually quite straightforward. One of the great features of
Multisite is that it can be enabled prior to installing WordPress, or anytime thereafter. So if you
decide to convert your WordPress site into Multisite a year down the road, you can certainly do that.

 The fi rst step to enabling Multisite is to modify your wp - config.php fi le. This fi le contains your
database connection settings and other important confi guration options. To enable Multisite
you need to add the following line above where it says /* That ’ s all, stop editing! Happy
blogging. */ :

define(‘WP_ALLOW_MULTISITE’, true);

 Adding this line to your wp - config.php fi le enables the Tools ➪ Network menu
options, as shown in Figure 15 - 1.

 Visiting this new menu option takes you to the Create a Network of WordPress
Sites admin page. If you have not done so already, you will be required to disable
all plugins prior to enabling Multisite. Here you can fi nd detailed instructions
on the necessary steps to complete the Multisite installation. In this tutorial
you confi gure Multisite to work with subdirectories, so if you plan to use
subdomains, be sure to follow the installation instructions closely as the code
may differ slightly.

 The next step is to create a blogs.dir directory inside your wp - content folder.
Multisite handles image permalinks differently than standard WordPress. All
images are uploaded to wp - content/blogs.dir/BLOG_ID/files/YEAR/MONTH . Permalinks for
fi les look like http://example.com/fi les/2011/10/image.png .

 FIGURE 15 - 1

428 ❘ CHAPTER 15 MULTISITE

 After you create the blogs.dir directory, you need to add the following code to your wp - confi g.php
fi le. Note that this is example code and the DOMAIN_CURRENT_SITE constant would contain your
Web site ’ s domain in place of example.com:

define(‘MULTISITE’, true);
define(‘SUBDOMAIN_INSTALL’, false);
$base = ‘/’;
define(‘DOMAIN_CURRENT_SITE’, ‘example.com’);
define(‘PATH_CURRENT_SITE’, ‘/’);
define(‘SITE_ID_CURRENT_SITE’, 1);
define(‘BLOG_ID_CURRENT_SITE’, 1);

 The fi nal step is to modify your .htaccess fi le in the root directory of your WordPress installation.
Replace the existing WordPress rules with the following code:

RewriteEngine On
RewriteBase /
RewriteRule ^index\.php$ - [L]

uploaded files
RewriteRule ^([_0-9a-zA-Z-]+/)?files/(.+) wp-includes/ms-files.php?file=$2 [L]

add a trailing slash to /wp-admin
RewriteRule ^([_0-9a-zA-Z-]+/)?wp-admin$ $1wp-admin/ [R=301,L]

RewriteCond %{REQUEST_FILENAME} -f [OR]
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^ - [L]
RewriteRule ^([_0-9a-zA-Z-]+/)?(wp-(content|admin|includes).*) $2 [L]
RewriteRule ^([_0-9a-zA-Z-]+/)?(.*\.php)$ $2 [L]
RewriteRule . index.php [L]

 After making the required changes, you may be required to log back in to WordPress. WordPress
Multisite is now enabled and installed and ready to use!

 MULTISITE FUNCTIONS

 When Multisite is enabled an entire new set of features and functions become available for plugin
developers to take advantage of. Understanding what functions are available can help you include
Multisite - specifi c functionality in the plugins you create. It can also help to understand how you can
make your plugins Multisite - compatible from the start.

 The Power of Blog ID

 Each site in your WordPress Multisite network has a unique ID, or blog ID. This blog ID will be
used in just about every Multisite - specifi c function you use. This is how WordPress determines
what site you want to work with. The blog ID is also used in the prefi x of the database tables for
your site.

Multisite Functions ❘ 429

 For example, if you enable Multisite and create a second site in your network, WordPress creates
several database tables prefi xed like wp_2_posts where wp_ is the table prefi x you defi ned when
installing WordPress, and 2_ is the blog ID of the new site. As you create additional sites, WordPress
creates additional database tables in the same manner.

 The blog ID is stored in the global variable $blog_id as shown here:

 < ?php
global $blog_id;
echo ‘Current blog ID: ‘ .$blog_id;
? >

 The $blog_ID global variable does exist in standard WordPress but will always be 1. In Multisite
mode the blog ID will be the ID of the blog the current user is viewing.

 Common Functions

 When working with WordPress Multisite you can take advantage of some common functions. The
fi rst function is called is_multisite() and determines whether Multisite support is enabled. Look
at an example:

 < ?php
if (is_multisite()) {
 echo ‘Multisite is enabled’;
}
? >

 As you can see this function doesn ’ t accept any parameters. It simply checks if Multisite is enabled
in WordPress and if so returns True . Anytime you plan on using Multisite - specifi c functions in
WordPress, it ’ s imperative that you use this function to verify Multisite is running. If Multisite is not
running, the default Multisite functions will not be available for use in WordPress, and you will get
errors in your plugin.

 Another useful function for retrieving network site posts is get_blog_post() . This function
retrieves a post from any site in the network.

 < ?php get_blog_post($blog_id, $post_id); ? >

 The function accepts two parameters: $blog_id and $post_id . Look at an example:

 < ?php
//set blog and post ID
$multisite_blog_id = 3;
$multisite_post_id = 4;

//load the post data
$post_details = get_blog_post(
 $multisite_blog_id, $multisite_post_id);

//display the post title and content

430 ❘ CHAPTER 15 MULTISITE

echo ‘Post Title: ‘ .$post_details- > post_title .’ < br / > ’;
echo ‘Post Content: ‘ .$post_details- > post_content .’ < br / > ’;
? >

 This example assumes you have a site with an ID of 3 and you want to retrieve post ID 4. This is a
quick - and - easy way to retrieve a post from any site in your network.

 It can also be useful to retrieve specifi c information about a site you are working with. To retrieve
site information you can use the get_blog_details() function.

 < ?php get_blog_details($fields, $getall); ? >

 The function accepts two parameters:

 $fields — Blog ID, a blog name, or an array of fi elds to query against

 $getall — Whether to retrieve all details

 This function returns an object containing all public variables stored in the wp_blogs table. You can
also retrieve a single, specifi c variable.

 < ?php
$blog_details = get_blog_details(1);
print_r($blog_details);
? >

 Running the preceding code would produce the following object output:

stdClass Object
(
 [blog_id] = > 1
 [site_id] = > 1
 [domain] = > example.com
 [path] = > /
 [registered] = > 2010-10-31 19:14:59
 [last_updated] = > 2010-11-11 14:19:34
 [public] = > 1
 [archived] = > 0
 [mature] = > 0
 [spam] = > 0
 [deleted] = > 0
 [lang_id] = > 0
 [blogname] = > Example Website
 [siteurl] = > http://example.com
 [post_count] = > 420
)

 As you can see there is a lot of valuable data returned about the site specifi ed. You can also retrieve
a single option value by stating the name to return:

 < ?php
echo ‘Total post count: ‘ .get_blog_details(1)- > post_count;
? >

➤

➤

Multisite Functions ❘ 431

 Switching and Restoring Sites

 One major advantage to using WordPress Multisite is how easy it is to aggregate content, and other
data, between different sites in your network.

 You can use two primary functions to pull data from sites in your network. The fi rst of these
functions is switch_to_blog() . This function enables you to switch to any site in your network.

 < ?php switch_to_blog($blog_id, $validate); ? >

 The function accepts two parameters:

 $blog_id — The ID of the site you want to switch to

 $validate — Whether to check if the site exists before proceeding

 The second function is restore_current_blog() . This function restores the user back to the
current site. You should always execute this function after calling switch_to_blog() . If not,
everything that processes after the switch will pull from the site you switched to, and not the current
site. This can mess up your widgets, site settings, and more.

 Now look at an example. In this example, you create a custom settings page and display posts from
the blog ID 3.

 < ?php
add_action(‘admin_menu’, ‘boj_multisite_switch_menu’);

function boj_multisite_switch_menu() {

 //create custom top-level menu
 add_menu_page(‘Multisite Switch’, ‘Multisite Switch’,
 ‘manage_options’, ‘boj-network-switch’, ‘boj_multisite_switch_page’);

}
? >

 First create a custom top - level menu. This will point to the boj_multisite_switch_page()
function, which will be the display page for the posts from site 3.

 < ?php
function boj_multisite_switch_page() {

 if (is_multisite()) {

 //switch to blog ID 3
 switch_to_blog(3);

 //create a custom Loop
 $recentPosts = new WP_Query();
 $recentPosts- > query(‘posts_per_page=5’);

 //start the custom Loop
 while ($recentPosts- > have_posts()) :

➤

➤

432 ❘ CHAPTER 15 MULTISITE

 $recentPosts- > the_post();

 //store the recent posts in a variable
 echo ‘ < p > < a href=”’ .get_permalink(). ‘” > ’ .
 get_the_title() .’ < /a > < /p > ’;

 endwhile;

 //restore the current site
 restore_current_blog();

 }

}
? >

 As always you need to verify Multisite is enabled using the is_multisite() function check. If
Multisite is not enabled, the switch_to_blog() and restore_current_blog() functions will not be
available to use in your plugin. Next, use the switch_to_blog() function to switch to blog ID 3. In
this case you hardcoded the blog ID, but this could always be a dynamic variable set by a user. Now
that you ’ ve switched to the site you want to pull content from, you need to create a custom Loop to
retrieve the content.

 To create the custom Loop, you defi ne a variable named $recentPosts and instantiate an instance
of WP_Query . Next set the query parameters; in this case you set posts_per_page to 5. This returns
the fi ve latest posts found. Now that WP_Query has been defi ned, it ’ s time to execute the Loop and
retrieve the results. You do this with the have_posts() and the_post() functions. The custom
loop will then echo out the posts found from the query.

 The fi nal step is to execute restore_current_blog() . If you did not run this function, WordPress
would stay on the site you switched to. If you execute additional loops below this, they would all
pull from blog ID 3, and not from the current site you are viewing.

 Now when you visit the plugin settings page the latest fi ve posts from blog ID 3 display. Review the
entire plugin:

 < ?php
/*
Plugin Name: Multisite Switch Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to demonstrate Multisite site switching
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘admin_menu’, ‘boj_multisite_switch_menu’);

function boj_multisite_switch_menu() {

 //create custom top-level menu

Multisite Functions ❘ 433

 add_menu_page(‘Multisite Switch’, ‘Multisite Switch’,
 ‘manage_options’,
 ‘boj-network-switch’, ‘boj_multisite_switch_page’);

}

function boj_multisite_switch_page() {

 if (is_multisite()) {

 //switch to blog ID 3
 switch_to_blog(3);

 //create a custom Loop
 $recentPosts = new WP_Query();
 $recentPosts- > query(‘posts_per_page=5’);

 //start the custom Loop
 while ($recentPosts- > have_posts()) :
 $recentPosts- > the_post();

 //store the recent posts in a variable
 echo ‘ < p > < a href=”’ .get_permalink(). ‘” > ’ .
 get_the_title() .’ < /a > < /p > ’;

 endwhile;

 //restore the current site
 restore_current_blog();

 }

}
? >

 Code snippet boj - multisite - switch.php

 This is a basic example that demonstrates the power of the switch_to_blog() functionality
in Multisite.

 The switch_to_blog() function is not just limited to site content. You can also retrieve other
WordPress data including widgets, sidebars, menus, and more. Basically any data stored in the
content database tables (wp_ID_tablename) is available when using the switch_to_blog()
function. Now look at a few examples. In the following example, you can assume you have a site
with an ID of 3 and you want to retrieve a navigation menu from the site.

 < ?php
//switch to blog ID 3
switch_to_blog(3);

//display the nav menu Main Menu

434 ❘ CHAPTER 15 MULTISITE

wp_nav_menu(‘Main Menu’);

//restore the current site
restore_current_blog();
? >

 First run switch_to_blog() to switch to blog ID 3. Next use the wp_nav_menu() function to
display a menu named Main Menu from the site. Finally run the restore_current_blog()
function to reset back to the blog you are viewing. The end result displays the nav menu Main
Menu created on site 3 anywhere you run this code in your network.

 As another example you can also easily load a sites sidebar using the same method.

 < ?php
//switch to blog ID 34
switch_to_blog(34);

//load the primary sidebar
get_sidebar();

//restore the current site
restore_current_blog();
? >

 It ’ s important to note that switch_to_blog() is database - only. This means a site ’ s plugins are not
included in a switch. So if site 2 has the Halloween Revenge plugin running, and you switch to site 2,
Halloween Revenge will not be available for use unless it is also activated on the site performing
the switch.

 Network Content Shortcode Examples

 Now take the switch example and integrate shortcode support. This plugin enables you to add
a shortcode to a post, defi ne what blog ID you want posts from, and display on your post
or page.

 First create a new shortcode using the add_shortcode() function, introduced in Chapter 10, “ The
Shortcode API. ”

 < ?php
add_shortcode(‘network_posts’, ‘boj_multisite_network_posts’);
? >

 The new shortcode will be [network_posts] . Next create the function to generate the network
posts to display when the shortcode is used in a post or page.

 < ?php
function boj_multisite_network_posts($attr) {
 extract(shortcode_atts(array(
 “blogid” = > ‘1’,
 “num” = > ‘5’

Multisite Functions ❘ 435

), $attr));

 if (is_multisite()) {

 $return_posts = ‘’;

 //switch to site set in the shortcode
 switch_to_blog(absint($blogid));

 //create a custom Loop
 $recentPosts = new WP_Query();
 $recentPosts- > query(‘posts_per_page=’ .absint($num));

 //start the custom Loop
 while ($recentPosts- > have_posts()) :
 $recentPosts- > the_post();

 //store the recent posts in a variable
 $return_posts .= ‘ < p > < a href=”’ .get_permalink() ‘” > ’ .get_the_title()
.’ < /a > < /p > ’;

 endwhile;

 //restore the current site
 restore_current_blog();

 //return the results to display
 return $return_posts;

 }
}
? >

 The shortcode can accept two parameters: blogid and num . This enables the user to set which site in
the network to pull the posts from and how many to display. As always check to verify Multisite is
enabled on the site before proceeding.

 $return_posts is the variable that stores all the posts to return to the shortcode for display, so
start by setting that variable to nothing to fl ush it out. Next use the switch_to_blog() function
to switch to the site specifi ed in the shortcode. If the user did not set a specifi c blog ID, it will
default to 1.

 Now it ’ s time to create a custom loop to retrieve the posts to display. You can see the posts_
per_page parameter is set to $num , which is set in the shortcode. If the user does not set the
number of posts to display, it defaults to 5. Next loop through the posts loaded and store them in
 $return_posts .

 After the custom loop fi nishes running, you need to execute restore_current_blog() . This
resets the site back to the site you are viewing, and not the site you switched to earlier. The fi nal step
is to return $return_posts . This replaces the shortcode in a post or page with the custom
loop results.

436 ❘ CHAPTER 15 MULTISITE

 Now you can easily retrieve posts from any site in your network using the shortcode such as
 [network_posts blogid= “ 3 ” num= “ 10 “]. Review the full plugin:

 < ?php
/*
Plugin Name: Multisite Switch Shortcode Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to aggregating content using a shortcode
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_shortcode(‘network_posts’, ‘boj_multisite_network_posts’);

function boj_multisite_network_posts($attr) {
 extract(shortcode_atts(array(
 “blogid” = > ‘1’,
 “num” = > ‘5’
), $attr));

 if (is_multisite()) {

 $return_posts = ‘’;

 //switch to site set in the shortcode
 switch_to_blog(absint($blogid));

 //create a custom Loop
 $recentPosts = new WP_Query();
 $recentPosts- > query(‘posts_per_page=’ .absint($num));

 //start the custom Loop
 while ($recentPosts- > have_posts()) :
 $recentPosts- > the_post();

 //store the recent posts in a variable
 $return_posts .= ‘ < p > < a href=”’ .get_permalink().
 ‘” > ’ .get_the_title() .’ < /a > < /p > ’;

 endwhile;

 //restore the current site
 restore_current_blog();

 //return the results to display
 return $return_posts;

 }
}
? >

 Code snippet boj - multisite - shortcode.php

Multisite Functions ❘ 437

 Now take the switch shortcode example to the next level and retrieve posts from multiple sites
in the network and display based on the latest post date. As in the previous example, use the
 add_shortcode() function to register the shortcode in your plugin:

 < ?php
add_shortcode(‘latest_network_posts’,
 ‘boj_multisite_latest_network_posts’);
? >

 Next create your custom boj_multisite_latest_network_posts() function:

 < ?php
function boj_multisite_latest_network_posts() {

 if (is_multisite()) {

 $return_posts = ‘’;

 As always check to verify Multisite is enabled using the is_multisite() function. You can also set
 $return_posts to nothing to fl ush it out. Now it ’ s time to retrieve the posts:

//get posts from current site
$local_posts = get_posts(‘numberposts=5’);

//switch to blog ID 3
switch_to_blog(3);

//get posts from another site
$network_posts = get_posts(‘numberposts=5’);

//restore the current site
restore_current_blog();

 Use the get_posts() function to retrieve the latest fi ve posts from the current site. Next switch
to blog ID 3 and run the same get_posts() function to retrieve the fi ve latest posts from that
site. Notice you are storing the returned array values in separate variables: $local_posts and
 $network_posts . Finally call restore_current_blog() to reset back to the current site you are on.

 Now that you have fi ve posts from each site stored in separate arrays, you need to merge them into a
single array.

//merge the two arrays
$posts = array_merge($local_posts, $network_posts);

 Now that you have a single array of posts, you need to sort the posts based on post date so that they
are in proper reverse chronological order with the latest post fi rst. Use the PHP usort() function to
sort the array based on a custom comparison function you will create later on.

//sort the post results by date
usort($posts, ‘boj_multisite_sort_posts_array’);

438 ❘ CHAPTER 15 MULTISITE

 Now that the posts are in the proper order in the array, you need to loop through the results and
assign them to the $return_posts variable.

foreach ($posts as $post) {

 //store latest posts in a variable
 $return_posts .= $post- > post_title .’ - posted on ‘
 .$post- > post_date .’ < br / > ’;

}

 Use a standard foreach PHP loop to loop through the results. Finally return the results for display
by the shortcode.

 //return the results to display
 return $return_posts;

 }
}

 The fi nal step is to create the custom function boj_multisite_sort_posts_array() to sort the
post array by the date that was called earlier from the usort function.

//sort the array by date
function boj_multisite_sort_posts_array($a, $b) {

 //if dates are the same return 0
 if ($a- > post_date == $b- > post_date)
 return 0;

 //ternary operator to determine which date is newer
 return $a- > post_date < $b- > post_date ? 1 : -1;

}

 This function simply compares two values and returns either a 1 or – 1 based on which is greater.
The usort() function sorts based on the number assigned.

 Review the entire plugin code:

 < ?php
/*
Plugin Name: Multisite Latest Network Posts Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: Displays the latest posts from multiple sites
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_shortcode(‘latest_network_posts’,

Multisite Functions ❘ 439

 ‘boj_multisite_latest_network_posts’);

function boj_multisite_latest_network_posts() {

 if (is_multisite()) {

 $return_posts = ‘’;

 //get posts from current site
 $local_posts = get_posts(‘numberposts=5’);

 //switch to blog ID 3
 switch_to_blog(3);

 //get posts from another site
 $network_posts = get_posts(‘numberposts=5’);

 //restore the current site
 restore_current_blog();

 //merge the two arrays
 $posts = array_merge($local_posts, $network_posts);

 //sort the post results by date
 usort($posts, ‘boj_multisite_sort_posts_array’);

 foreach ($posts as $post) {

 //store latest posts in a variable
 $return_posts .= $post- > post_title .’ - posted on ‘
 .$post- > post_date .’ < br / > ’;

 }

 //return the results to display
 return $return_posts;

 }

}

//sort the array by date
function boj_multisite_sort_posts_array($a, $b) {

 //if dates are the same return 0
 if ($a- > post_date == $b- > post_date)
 return 0;

 //ternary operator to determine which date is newer
 return $a- > post_date < $b- > post_date ? 1 : -1;

}
? >

 Code snippet boj - multisite - latest - network - posts.php

440 ❘ CHAPTER 15 MULTISITE

 One thing to consider when using switch_to_blog() is performance. This function can cause a
heavy performance hit on your server depending on the size of your network. Whenever you use this
function, it ’ s always best to cache the results, if possible, rather than retrieve in real - time. This can
greatly reduce the server load when retrieving content and other data across sites in your network.
Caching is covered in detail in Chapter 16, “ Debugging and Optimizing. ”

 A Network Content Widget Example

 Another common task when working in a Multisite environment is a widget to display recent posts
from sites in the network. You can create a plugin with a widget to display the recent posts from any
site in the network.

 < ?php
//widgets_init action hook to execute custom function
add_action(‘widgets_init’, ‘boj_multisite_register_widget’);

//register our widget
function boj_multisite_register_widget() {
 register_widget(‘boj_multisite_widget’);
}
? >

 First use the widgets_init action hook to run the custom function to register your new widget. In
this example the new widget will be registered as boj_multisite_widget . Next create a new class
using the registered widget name and extending the WP_Widget .

 < ?php
//boj_multisite_widget class
class boj_multisite_widget extends WP_Widget {

 //process our new widget
 function boj_multisite_widget() {

 $widget_ops = array(‘classname’ = > ‘boj_multisite_widget’,
 ‘description’ = > ‘Display recent posts
 from a network site.’);
 $this- > WP_Widget(‘boj_multisite_widget_posts’,
 ‘Multisite Recent Posts’,
 $widget_ops);

 }

 You also defi ne the widget settings. You set the widget name to Multisite Recent Posts, the
description of what the widget does, and the custom class name that will be used when displaying
the widget.

 Now it ’ s time to create the widget settings form. This widget contains three settings: Title, the site
to load recent posts from, and the number of posts to display.

 //build our widget settings form
 function form($instance) {

Multisite Functions ❘ 441

 global $wpdb;

 $defaults = array(‘title’ = > ‘Recent Posts’,
 ‘disp_number’ = > ‘5’);
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance[‘title’];
 $siteid = $instance[‘siteid’];
 $disp_number = $instance[‘disp_number’];

 You will be making a custom database query to retrieve the network blog IDs, so you need to
defi ne $wpdb as a global variable. The widget defaults are set in the $defaults variable; in this case
you set the default title to Recent Posts and the default number of posts to display to 5. Next the
instance values are loaded, which are your widget setting values.

 Now that you have loaded the widget values, you need to add the form fi eld settings for the widget.
The fi rst fi eld is a text fi eld to store the widget title that will be displayed:

 //title textfield widget option
 echo ‘ < p > Title: < input class=”widefat” name=”’
 .$this- > get_field_name(‘title’)
 .’” type=”text” value=”’
 .esc_attr($title). ‘” / > < /p > ’;

 As always you want to use the proper escaping function when displaying data entered in by a user,
in this case esc_attr() to display the $title value.

 The next fi eld to add is a select form to set which site in the network to display recent posts from.
To create this form fi eld, you need to retrieve a list of all public blog IDs in your network. Create a
custom query to retrieve the IDs.

 //get a list of all public blog IDs
 $sql = “SELECT blog_id FROM $wpdb- > blogs
 WHERE public = ‘1’ AND archived = ‘0’ AND mature = ‘0’
 AND spam = ‘0’ AND deleted = ‘0’ “;

 $blogs = $wpdb- > get_col($wpdb- > prepare($sql));

 The query retrieves all public blog IDs in your Multisite network and returns them in an array
stored in the $blogs variable. Now that you have the blog IDs, you need to loop through the results
to build the select list.

 if (is_array($blogs)) {

 echo ‘ < p > ’;
 echo ‘Site to display recent posts’;
 echo ‘ < select name=”’ .$this- > get_field_name(‘siteid’)
 .’” class=”widefat” > ’;

 //loop through the blog IDs
 foreach ($blogs as $blog) {

 //display each site as an option

442 ❘ CHAPTER 15 MULTISITE

 echo ‘ < option value=”’ .$blog. ‘” ‘
 .selected($blog, $siteid)
 .’ > ’ .get_blog_details($blog)- > blogname
 .’ < /option > ’;

 }

 echo ‘ < /select > ’;
 echo ‘ < /p > ’;
 }

 Before working with an array, it ’ s a good practice to verify it is actually an array. You can do so
using the PHP function is_array() . After you confi rm that $blogs is an array, you can display the
option text and select fi eld. To display each site as an option , loop through the array values. Use
the get_blog_details() function to display the site name in the option fi eld. The $blog variable,
which stores the blog ID, is set to the value of the option fi eld.

 The fi nal form fi eld to display is the number of posts option.

 //number to display textfield widget option
 echo ‘ < p > Number to display: < input class=”widefat” name=”’
 .$this- > get_field_name(‘disp_number’). ‘” type=”text”
 value=”’ .esc_attr($disp_number). ‘” / > < /p > ’;

 }

 Just as the title option before, this is a standard text form fi eld to store
the number of posts to display. That ’ s the fi nal widget form fi eld, so be
sure to close out the function with } . Now your widget settings form
has been created and looks like Figure 15 - 2.

 Next you need to save your widget settings using the update widget
class function.

 //save the widget settings
 function update($new_instance, $old_instance) {

 $instance = $old_instance;
 $instance[‘title’] = strip_tags($new_instance[‘title’]);
 $instance[‘siteid’] = absint($new_instance[‘siteid’]);
 $instance[‘disp_number’] =
 absint($new_instance[‘disp_number’]);

 return $instance;
 }

 The widget class will handle saving the options for you. Be sure to sanitize the widget settings. Both
 siteid and disp_number should always be a number, so use the absint() function to verify the
setting is a positive integer.

 The fi nal step is to display the widget.

 FIGURE 15 - 2

Multisite Functions ❘ 443

 //display the widget
 function widget($args, $instance) {
 extract($args);

 echo $before_widget;

 //load the widget options
 $title = apply_filters(‘widget_title’, $instance[‘title’]);
 $siteid = empty($instance[‘siteid’]) ? 1 :
 $instance[‘siteid’];
 $disp_number = empty($instance[‘disp_number’]) ? 5 :
 $instance[‘disp_number’];

 //display the widget title
 if (!empty($title)) { echo $before_title . $title .
 $after_title; };

 echo ‘ < ul > ’;

 First, extract the $args variable to gain access to the global theme values like $before_widget and
 $after_widget . Next load the widget settings. The $siteid and $disp_number variables are both
using a ternary operator to set their values. This means if the option value is empty it will be set to a
default value. $siteid would default to 1, and $disp_number would default to 5.

 Now display the $title , surrounded by the $before_title and $after_title global theme
values. Now it ’ s time to display the recent posts from the site saved in the widget.

 //switch to site saved
 switch_to_blog(absint($siteid));

 //create a custom loop
 $recentPosts = new WP_Query();
 $recentPosts- > query(‘posts_per_page=’
 .absint($disp_number));

 //start the custom Loop
 while ($recentPosts- > have_posts()) :
 $recentPosts- > the_post();

 //display the recent post title with link
 echo ‘ < li > < a href=”’ .get_permalink(). ‘” > ’
 .get_the_title() .’ < /a > < /li > ’;

 endwhile;

 //restore the current site
 restore_current_blog();

 echo ‘ < /ul > ’;
 echo $after_widget;

 }

}

444 ❘ CHAPTER 15 MULTISITE

 Using the switch_to_blog() function, the widget switches to the site saved in the widget settings.
After the site has been loaded, create a custom loop using the WP_Query class. The posts_per_page
query parameter is defi ned by the $disp_number widget setting. The recent posts display in an
unordered list using a while loop. After the loop completes, you need to restore the current site
using restore_current_blog() .

 You now have a Multisite widget to easily display posts from any site in your network! This simple
example shows the power of aggregating content throughout a Multisite network in WordPress and
how easy it is to accomplish that.

 < ?php
/*
Plugin Name: Multisite Recent Posts Widget
Plugin URI: http://example.com
Description: Retrieves the most recent posts in a Multisite network
Author: Brad Williams
Version: 1.0
Author URI: http://wrox.com
*/

//widgets_init action hook to execute custom function
add_action(‘widgets_init’, ‘boj_multisite_register_widget’);

//register our widget
function boj_multisite_register_widget() {
 register_widget(‘boj_multisite_widget’);
}

//boj_multisite_widget class
class boj_multisite_widget extends WP_Widget {

 //process our new widget
 function boj_multisite_widget() {

 $widget_ops = array(‘classname’ = > ‘boj_multisite_widget’,
 ‘description’ = >
 ‘Display recent posts from a network site.’);
 $this- > WP_Widget(‘boj_multisite_widget_posts’,
 ‘Multisite Recent Posts’, $widget_ops);

 }

 //build our widget settings form
 function form($instance) {
 global $wpdb;

 $defaults = array(‘title’ = > ‘Recent Posts’,
 ‘disp_number’ = > ‘5’);
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance[‘title’];
 $siteid = $instance[‘siteid’];
 $disp_number = $instance[‘disp_number’];

 //title textfield widget option

Multisite Functions ❘ 445

 echo ‘ < p > Title: < input class=”widefat” name=”’
 .$this- > get_field_name(‘title’)
 . ‘” type=”text” value=”’ .esc_attr($title)
 . ‘” / > < /p > ’;

 //get a list of all public blog IDs
 $sql = “SELECT blog_id FROM $wpdb- > blogs
 WHERE public = ‘1’ AND archived = ‘0’ AND mature = ‘0’
 AND spam = ‘0’ AND deleted = ‘0’ “;
 $blogs = $wpdb- > get_col($wpdb- > prepare($sql));

 if (is_array($blogs)) {

 echo ‘ < p > ’;
 echo ‘Site to display recent posts’;
 echo ‘ < select name=”’ .$this- > get_field_name(‘siteid’)
 .’” class=”widefat” > ’;

 //loop through the blog IDs
 foreach ($blogs as $blog) {

 //display each site as an option
 echo ‘ < option value=”’ .$blog. ‘” ‘
 .selected($blog, $siteid)
 . ‘ > ’ .get_blog_details($blog)- > blogname
 . ‘ < /option > ’;

 }

 echo ‘ < /select > ’;
 echo ‘ < /p > ’;
 }

 //number to display textfield widget option
 echo ‘ < p > Number to display: < input class=”widefat” name=”’
 .$this- > get_field_name(‘disp_number’). ‘” type=”text”
 value=”’ .esc_attr($disp_number). ‘” / > < /p > ’;

 }

 //save the widget settings
 function update($new_instance, $old_instance) {

 $instance = $old_instance;
 $instance[‘title’] = strip_tags($new_instance[‘title’]);
 $instance[‘siteid’] = absint($new_instance[‘siteid’]);
 $instance[‘disp_number’] =
 absint($new_instance[‘disp_number’]);

 return $instance;
 }

 //display the widget
 function widget($args, $instance) {

446 ❘ CHAPTER 15 MULTISITE

 extract($args);

 echo $before_widget;

 //load the widget options
 $title = apply_filters(‘widget_title’, $instance[‘title’]);
 $siteid = empty($instance[‘siteid’]) ? 1 :
 $instance[‘siteid’];
 $disp_number = empty($instance[‘disp_number’]) ? 5 :
 $instance[‘disp_number’];

 //display the widget title
 if (!empty($title)) { echo $before_title . $title
 . $after_title; };

 echo ‘ < ul > ’;

 //switch to site saved
 switch_to_blog(absint($siteid));

 //create a custom loop
 $recentPosts = new WP_Query();
 $recentPosts- > query(‘posts_per_page=’
 .absint($disp_number));

 //start the custom Loop
 while ($recentPosts- > have_posts()) :
 $recentPosts- > the_post();

 //display the recent post title with link
 echo ‘ < li > < a href=”’ .get_permalink(). ‘” > ’
 .get_the_title() .’ < /a > < /li > ’;

 endwhile;

 //restore the current site
 restore_current_blog();

 echo ‘ < /ul > ’;
 echo $after_widget;

 }

}
? >

 Code snippet boj - multisite - widget.php

 Creating a New Site

 You can easily create new sites in your Multisite network in the admin dashboard of WordPress. But
what if you want to create a new site in your plugin? As always there ’ s a function for that, and it ’ s
called wpmu_create_blog() .

Multisite Functions ❘ 447

 < ?php wpmu_create_blog($domain, $path, $title,
 $user_id, $meta, $blog_id); ? >

 This function accepts six parameters:

 $domain — The domain of the new site.

 $path — The path of the new site. This is the subdirectory or subdomain name depending
on which setup you use.

 $title — The title of the new site.

 $user_id — The user ID of the user account who will be the site admin.

 $meta — Additional meta information.

 $blog_id — The blog ID of the site to be created.

 The only required parameters are the fi rst four; the last two are optional. If the new site is created
successfully, the function returns the newly created blog ID.

 As you noticed, the function begins with wpmu_ . Many of the Multisite functions were once a part
of WordPress MU, prior to the merging of the two code bases. These function names can contain
 wpmu , or blog , to support backward compatibility.

 As an example create a plugin that enables users to create sites in WordPress Multisite. First, create
a custom top - level menu for the plugin page.

 < ?php
add_action(‘admin_menu’, ‘boj_multisite_create_menu’);

function boj_multisite_create_menu() {

 //create custom top-level menu
 add_menu_page(‘Multisite Create Site Page’,
 ‘Multisite Create Site’,
 ‘manage_options’, ‘boj-network-create’,
 ‘boj_multisite_create_sites_page’);

}
? >

 Now create the function to display a form for creating a new site.

 < ?php
function boj_multisite_create_sites_page() {

 //check if multisite is enabled
 if (is_multisite()) {

 As always you need to verify Multisite is enabled before using any Multisite - specifi c functions. Next
add the code to retrieve the form fi elds submitted and create a new site in the network with the values:

 < ?php
//if the form was submitted lets process it

➤

➤

➤

➤

➤

➤

448 ❘ CHAPTER 15 MULTISITE

 if (isset($_POST[‘create_site’])) {

 //populate the variables based on form values
 $domain = esc_html($_POST[‘domain’]);
 $path = esc_html($_POST[‘path’]);
 $title = esc_html($_POST[‘title’]);
 $user_id = absint($_POST[‘user_id’]);

 //verify the required values are set
 if ($domain & & $path & & $title & & $user_id) {

 //create the new site in WordPress
 $new_site = wpmu_create_blog($domain, $path,
 $title, $user_id);

 //if successfully display a message
 if ($new_site) {

 echo ‘ < div class=”updated” > New site ‘
 .$new_site. ‘ created successfully! < /div > ’;

 }

 //if required values are not set display an error
 } else {

 echo ‘ < div class=”error” >
 New site could not be created.
 Required fields are missing < /div > ’;

 }

 }
? >

 First check if $_POST[‘ create_site ’] is set. This will be set only if the form has been submitted.
Next populate the variables based on the form entries. Notice you ’ ll be using the proper escaping
functions to verify the data submitted from the form is escaped properly.

 Next verify that $domain , $path , $title , and $user_id all have values because they are the
required fi elds when creating sites using wpmu_create_blog() . If the values are not fi lled out, an
error message displays. After you verify all values exist, it ’ s time to execute the wpmu_create_
blog() function to create the new site. If the site is created successfully, the variable $new_site will
contain the ID of the newly created site and a success message will be displayed.

 The fi nal piece is to create the form for the new site fi elds.

 < div class=”wrap” >
 < h2 > Create New Site < /h2 >
 < form method=”post” >
 < table class=”form-table” >
 < tr valign=”top” >

Multisite Functions ❘ 449

 < th scope=”row” >
 < label for=”fname” > Domain < /label >
 < /th >
 < td > < input maxlength=”45” size=”25” name=”domain”
 value=” < ?php echo DOMAIN_CURRENT_SITE; ? > ” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”fname” > Path < /label > < /th >
 < td >
 < input maxlength=”45” size=”10” name=”path” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” >
 < label for=”fname” > Title < /label >
 < /th >
 < td >
 < input maxlength=”45” size=”25” name=”title” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” >
 < label for=”fname” > User ID < /label >
 < /th >
 < td >
 < input maxlength=”45” size=”3” name=”user_id” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < td >
 < input type=”submit” name=”create_site”
 value=”Create Site” class=”button-primary” / >

 < input type=”submit” name=”reset”
 value=”Reset” class=”button-secondary” / >
 < /td >
 < /tr >
 < /table >
 < /form >
 < /div >

 This is a fairly basic form that accepts the parameters required to create a new site.

 Now review the entire plugin code:

 < ?php
/*
Plugin Name: Multisite Create Site Example Plugin
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: A plugin to demonstrate creating sites in Multisite
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com

450 ❘ CHAPTER 15 MULTISITE

License: GPLv2
*/

add_action(‘admin_menu’, ‘boj_multisite_create_menu’);

function boj_multisite_create_menu() {

 //create custom top-level menu
 add_menu_page(‘Multisite Create Site Page’,
 ‘Multisite Create Site’,
 ‘manage_options’, ‘boj-network-create’,
 ‘boj_multisite_create_site_settings’);

}

function boj_multisite_create_site_settings() {

 //check if multisite is enabled
 if (is_multisite()) {

 //if the form was submitted lets process it
 if (isset($_POST[‘create_site’])) {

 //populate the variables based on form values
 $domain = esc_html($_POST[‘domain’]);
 $path = esc_html($_POST[‘path’]);
 $title = esc_html($_POST[‘title’]);
 $user_id = absint($_POST[‘user_id’]);

 //verify the required values are set
 if ($domain & & $path & & $title & & $user_id) {

 //create the new site in WordPress
 $new_site = wpmu_create_blog($domain, $path,
 $title, $user_id);

 //if successfully display a message
 if ($new_site) {

 echo ‘ < div class=”updated” > New site ‘
 .$new_site. ‘ created successfully! < /div > ’;

 }

 //if required values are not set display an error
 } else {

 echo ‘ < div class=”error” >
 New site could not be created.
 Required fields are missing < /div > ’;

 }

 }

Multisite Functions ❘ 451

 ? >
 < div class=”wrap” >
 < h2 > Create New Site < /h2 >
 < form method=”post” >
 < table class=”form-table” >
 < tr valign=”top” >
 < th scope=”row” >
 < label for=”fname” > Domain < /label >
 < /th >
 < td > < input maxlength=”45” size=”25” name=”domain”
 value=” < ?php echo DOMAIN_CURRENT_SITE; ? > ” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”fname” > Path < /label > < /th >
 < td >
 < input maxlength=”45” size=”10” name=”path” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” > < label for=”fname” > Title < /label > < /th >
 < td >
 < input maxlength=”45” size=”25” name=”title” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < th scope=”row” >
 < label for=”fname” > User ID < /label >
 < /th >
 < td >
 < input maxlength=”45” size=”3” name=”user_id” / >
 < /td >
 < /tr >
 < tr valign=”top” >
 < td >
 < input type=”submit” name=”create_site”
 value=”Create Site” class=”button-primary” / >
 < input type=”submit” name=”reset” value=”Reset”
 class=”button-secondary” / >
 < /td >
 < /tr >
 < /table >
 < /form >
 < /div >
 < ?php
 } else {

 echo ‘ < p > Multisite is not enabled < /p > ’;

 }

}
? >

 Code snippet boj - multisite - create - site.php

452 ❘ CHAPTER 15 MULTISITE

 There is also an easy method to update a site ’ s status. This is useful if you want to dynamically
archive a site, or fl ag a site as spam. To do so use the update_blog_status() function.

 < ?php update_blog_status($blog_id, $pref, $value, $refresh); ? >

 The function accepts four parameters:

 $blog_id — The blog ID of the site to update

 $pref — The status type to update

 $value — The new value of the status

 $refresh — Whether to refresh the site details cache

 The fi rst three parameters are required. The $pref parameter is the status to update, which accepts
 site_id , domain , path , registered , last_updated , public , archived , mature , spam , deleted ,
and lang_id . In this example you update a site in your network to be archived.

 < ?php
update_blog_status($blog_id, ‘archived’, 1);
? >

 Multisite Site Options

 Options in Multisite are stored similar to standard WordPress but use a different set of functions:

 add_blog_option() — Creates a new option

 update_blog_option() — Updates an option and creates it if it doesn ’ t exist

 get_blog_option() — Loads a site option that already exists

 delete_blog_option() — Deletes a site option

 The major difference between this set of functions and the standard option functions is you have
to pass a blog ID parameter to each function. The function will then switch to the site specifi ed,
handle the option task, and then switch back to the current site.

 < ?php add_blog_option($blog_id, $key, $value); ? >

 The $blog_id is the ID of the site you want to add an option to. The $key is the name of the option
to add, and the $value is the value of the new option.

 Loading site options is just as easy. Using the get_blog_option() function, you can load any
site - specifi c option required.

 < ?php
$blog_id = 3;
echo ‘ < p > Site ID: ‘.$blog_id .’ < /p > ’;
echo ‘ < p > Site Name: ‘ .get_blog_option($blog_id, ‘blogname’)
 .’ < /p > ’;
echo ‘ < p > Site URL: ‘ .get_blog_option($blog_id, ‘siteurl’) .’ < /p > ’;
? >

➤

➤

➤

➤

➤

➤

➤

➤

Multisite Functions ❘ 453

 Users in a Network

 Users in a Multisite network work slightly different than in standard WordPress. If Allow New
Registrations is enabled under Network Settings, visitors to your site can register new accounts
in WordPress. The major difference is each site in your network can feature a different set of
users. Users can also have different roles on different sites throughout the network. Users are
not automatically members of every site in your network, but rather the main (fi rst) site in your
network. For example if your network features two sites, a Halo Blog and a Tekken Blog, any user
who registers would be a member of the Halo Blog but not the Tekken Blog.

 Before executing any code that is site - specifi c, you should verify the user logged in is a member of
that site. Multisite features multiple functions for working with users. To verify a user is a member
of the site, use the is_blog_user() function:

 < ?php is_blog_user($blog_id) ? >

 The function accepts one parameter, $blog_id , which is optional. If the parameter isn ’ t specifi ed, it
defaults to the current blog you are on.

 < ?php
if (is_blog_user()) {
 //user is a member of this site
}
? >

 You can also specify a blog ID if you want to verify the user is a member of a different site in the
network:

 < ?php
if (is_blog_user(3)) {
 //user is a member of blog ID 3
}
? >

 Now that you understand how to check if a user is a member of a site, look at adding members to
a site. In Multisite you use the add_user_to_blog() function to add any user in WordPress to a
specifi c site in your network.

 < ?php add_user_to_blog($blog_id, $user_id, $role); ? >

 This function accepts three parameters:

 $blog_id — The ID of the site you want to add the user to

 $user_id — The ID of the user to add

 $role — The user role the user will have on the site

 Look at a working example:

 < ?php
$blog_id = 18;

➤

➤

➤

454 ❘ CHAPTER 15 MULTISITE

$user_id = 4;
$role = ‘editor’;

add_user_to_blog($blog_id, $user_id, $role);
? >

 Now build a real - world example plugin. This plugin auto - adds logged - in users to any site they visit
in your network. This is useful if you want users to become members on every site in your network
without manually adding them to each one.

 Start off by using the init action hook to execute your custom function to add users to a site:

 < ?php
add_action(‘init’, ‘boj_multisite_add_user_to_site’);
? >

 Next create the boj_multisite_add_user_to_site() function to add the users.

 < ?php
function boj_multisite_add_user_to_site() {

 //verify user is logged in before proceeding
 if(!is_user_logged_in())
 return false;

 //load current blog ID and user data
 global $current_user, $blog_id;

 //verify user is not a member of this site
 if(!is_blog_user()) {

 //add user to this site as a subscriber
 add_user_to_blog($blog_id, $current_user- > ID, ‘subscriber’);

 }

}
? >

 The fi rst step is to verify the users are logged in, and if not return false and exit the function. After
you have verifi ed the users are logged in, call the global $current_user and $blog_id variables.
These variables store the data of the current logged - in users and the blog ID the users are currently
viewing. Next confi rm if the users are already members of the site they are viewing. If the users are
already members, there is no reason to add them again.

 The fi nal step is to add the users to the site using the add_user_to_blog() function. You ’ ll pass in
the blog ID, current user ID, and the role the users are assigned on the site, in this case subscriber.
That ’ s it! For this plugin to work across your entire network you ’ ll either need to upload to the
 /mu - plugins directory or Network Activate the plugin in the Network Admin ➪ Plugins page.
That forces the plugin the run across all sites in your network.

Multisite Functions ❘ 455

 Review the entire plugin:

 < ?php
/*
Plugin Name: Multisite Auto-Add User to Site
Plugin URI: http://example.com/wordpress-plugins/my-plugin
Description: Plugin automatically adds the user to any site they visit
Version: 1.0
Author: Brad Williams
Author URI: http://wrox.com
License: GPLv2
*/

add_action(‘init’, ‘boj_multisite_add_user_to_site’);

function boj_multisite_add_user_to_site() {

 //verify user is logged in before proceeding
 if(!is_user_logged_in())
 return false;

 //load current blog ID and user data
 global $current_user,$blog_id;

 //verify user is not a member of this site
 if(!is_blog_user()) {

 //add user to this site as a subscriber
 add_user_to_blog($blog_id, $current_user- > ID, ‘subscriber’);

 }

}

? >

 Code snippet boj - multisite - add - users.php

 As easily as you can add users, you can also remove users from a site using the remove_user_from_
blog() function.

 < ?php remove_user_from_blog($user_id, $blog_id, $reassign); ? >

 This function accepts three parameters:

 $user_id — The user ID you want to remove

 $blog_id — The blog ID to remove the user from

 $reassign — The user ID to reassign posts to

➤

➤

➤

456 ❘ CHAPTER 15 MULTISITE

 Look at a working example:

 < ?php
$user_id = 4;
$blog_id = 18;
$reassign = 1;

remove_user_from_blog($user_id, $blog_id, $reassign);

? >

Remember adding and removing users from a site in Multisite is not actually
creating or deleting the user in WordPress, but instead adding or removing them
as a member of that site.

 Another useful function when working with Multisite users is get_blogs_of_user() . This function
retrieves site info for all sites the specifi ed users are a member of.

 < ?php
$user_id = 1;
$user_sites = get_blogs_of_user($user_id);
print_r($user_sites);
? >

 Running this code example would result in an object array being returned:

Array
(
 [1] = > stdClass Object
 (
 [userblog_id] = > 1
 [blogname] = > Main Site
 [domain] = > example.com
 [path] = > /
 [site_id] = > 1
 [siteurl] = > http://example.com
)

 [2] = > stdClass Object
 (
 [userblog_id] = > 2
 [blogname] = > Halloween Revenge
 [domain] = > example.com
 [path] = > /myers/
 [site_id] = > 1
 [siteurl] = > http://example.com/myers
)

 [8] = > stdClass Object
 (

Multisite Functions ❘ 457

 [userblog_id] = > 8
 [blogname] = > Freddy Lives
 [domain] = > example.com
 [path] = > /kruger/
 [site_id] = > 1
 [siteurl] = > http://example.com/kruger
)

)

 You can also do a foreach loop to display specifi c data from the array:

 < ?php
$user_id = 1;
$user_sites = get_blogs_of_user($user_id);

foreach ($user_sites AS $user_site) {

 echo ‘ < p > ’.$user_site- > siteurl .’ < /p > ’;

}
? >

 Multisite Super Admin

 Multisite also introduces a new user role: Super admin. Super admin users have access to the
Network Admin section of WordPress. This is where all network settings, themes, plugins, and
so on are managed. Super admins also have full control over every site in the network, whereas a
normal admin can administer only their specifi c sites.

 In Multisite you can easily assign an existing user to the super admin role by using the grant_
super_admin() function. This function accepts only one parameter, which is the user ID to which
you want to grant super admin privileges.

 < ?php
$user_id = 4;
grant_super_admin($user_id);
? >

 As quickly as you can grant super admin privileges, you can just as easily revoke them using the
 revoke_super_admin() function. This function also accepts only one parameter, which is the user
ID to revoke as super admin.

 < ?php
$user_id = 4;
revoke_super_admin($user_id);
? >

 Both of these functions are located in wp - admin/includes/ms.php . This means these functions
by default are not available on the public side of your site and can be used only on the admin side.

458 ❘ CHAPTER 15 MULTISITE

For example, if you tried calling either of these functions with a shortcode, you would get a Call to
Undefi ned Function PHP error.

 To list all super admins in Multisite, use the get_super_admins() function. This function returns
an array of all super admin usernames in your network.

 < ?php
$all_admins = get_super_admins();
print_r($all_admins);
? >

 This would return the following array of super admins:

Array
(
 [0] = > admin
 [1] = > brad
)

 You can also easily check specifi c users ’ IDs to determine if they are a super admin in your network.
To do so use the is_super_admin() function.

 < ?php
$user_id = 1;

if (is_super_admin($user_id)) {
 echo ‘User is Super admin’;
}
? >

 Checking the Site Owner

 Every site in your Multisite network has a site owner. This owner is defi ned by the admin email
address stored in the site options and is set when a new site is created in your network. If you allow
open site registration, the user who created the site will be set as the site owner. If you created the
site in the dashboard, you can set the owner ’ s email at time of creation.

 In some cases you may want to retrieve a site owner and corresponding user data. Following is an
example of how you can so.

 < ?php
$blog_id = 3;
$admin_email = get_blog_option($blog_id, ‘admin_email’);
$user_info = get_user_by(‘email’, $admin_email);
print_r($user_info);
? >

 First, use the get_blog_option() function to retrieve the admin_email value for blog ID 3. Next
use the get_user_by() function to retrieve the user data based off the admin email. This function

Multisite Functions ❘ 459

enables you to retrieve user data by either user ID, slug, email, or login. In this case use the admin
email to load the user data. The results are shown here:

stdClass Object
(
 [ID] = > 3
 [user_login] = > freddy
 [user_pass] = > PB0VRNh0UbN/4YqMFB8fl3OZM2FGKfg1
 [user_nicename] = > Freddy Krueger
 [user_email] = > freddy@example.com
 [user_url] = >
 [user_registered] = > 2011-10-31 19:00:00
 [user_activation_key] = >
 [user_status] = > 0
 [display_name] = > Freddy
 [spam] = > 0
 [deleted] = > 0
 [first_name] = > Freddy
 [last_name] = > Krueger
 [nickname] = > fredster
 [description] = >
 [rich_editing] = > true
 [comment_shortcuts] = > false
 [admin_color] = > fresh
 [use_ssl] = > 0
 [aim] = >
 [yim] = >
 [jabber] = >
 [source_domain] = > example.com
 [primary_blog] = > 3
 [wp_3_capabilities] = > Array
 (
 [administrator] = > 1
)

 [wp_3_user_level] = > 10
 [user_firstname] = > Freddy
 [user_lastname] = > Krueger
 [user_description] = >
)

 As you can see a lot of useful user information is returned for the site admin account.

 Network Stats

 Multisite features a few functions to generate stats about your network. The get_user_count()
function returns the total number of users registered in WordPress. The get_blog_count() function
returns the total number of sites in your network. You can also use the get_sitestats() function to
retrieve both values at once in an array.

 < ?php
$user_count = get_user_count();

460 ❘ CHAPTER 15 MULTISITE

echo ‘ < p > Total users: ‘ .$user_count .’ < /p > ’;

$blog_count = get_blog_count();
echo ‘ < p > Total sites: ‘ .$blog_count .’ < /p > ’;

$network_stats = get_sitestats();
print_r($network_stats);
? >

 MULTISITE DATABASE SCHEMA

 WordPress Multisite features a different database schema from standard WordPress. When updating
or enabling Multisite, WordPress creates the necessary tables in your database to support Multisite
functionality.

 Multisite - Specifi c Tables

 WordPress stores global Multisite settings in centralized tables. These tables are installed only when
Multisite is activated and installed, excluding wp_users and wp_usermeta .

 wp_blogs — Stores each site created in Multisite.

 wp_blog_versions — Stores the current database version of each site in the network.

 wp_registration_log — Keeps a log of all users registered and activated in WordPress.

 wp_signups — Stores users and sites registered using the WordPress registration process.

 wp_site — Stores the primary site ’ s address information.

 wp_sitecategories — If global terms are enabled, they are stored in this table.

 wp_sitemeta — Stores various option data for the primary site including super admin
accounts.

 wp_users — Stores all users registered in WordPress.

 wp_usermeta — Stores all meta data for user accounts in WordPress.

 You ’ ll probably notice we ’ re missing some important WordPress tables in this list. The rest of the
tables created for Multisite are site - specifi c tables.

 Site - Specifi c Tables

 Each site in your network features site - specifi c database tables. These tables hold the content and
setting specifi c to that individual site. Remember these tables are prefi xed with the $table_prefix
defi ned in wp - config.php , followed by $blog_id and then the table name.

 wp_1_commentmeta

 wp_1_comments

 wp_1_links

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Summary ❘ 461

 wp_1_options

 wp_1_postmeta

 wp_1_posts

 wp_1_terms

 wp_1_term_relationships

 wp_1_term_taxonomy

 As you can see these tables can make your database quickly grow in size. That ’ s why the only
limitation to WordPress Multisite is the server resources available to power your network of sites.
If your network contains 1,000 sites, your database would have more than 9,000 tables. Obviously
this wouldn ’ t be ideal to host on a small shared hosting account.

 SUMMARY

 WordPress Multisite features limitless possibilities. Enabling Multisite opens the door to creating
an amazing network of sites. This also opens up new doors for your plugins with the additional
Multisite features and functions.

 When developing plugins for WordPress, you need to test your plugins in a Multisite setup to verify
they are compatible. Now that Multisite is included in every WordPress download by default, more
and more users are converting their standard site to Multisite to take advantage of the rapid site
deployment features and network capabilities.

➤

➤

➤

➤

➤

➤

Debugging and Optimizing

 WHAT ’ S IN THIS CHAPTER?

 Keeping updated with WordPress

 Debugging your plugins

 Logging debug errors

 Caching data for optimal speed

 You can debug and optimize code in many ways. WordPress provides several simple - to - use
tools that make plugin developers ’ lives easier. One of the largest problems in the community
is that many plugin developers simply don ’ t use these basic techniques, leaving loads of room
for improvement.

 Throughout this chapter, you learn how to deal with outdated versions of WordPress, debug
issues with your plugins, and cache (store) data for later use. The topics presented in this
chapter are all simple features that you can use to make a better plugin.

 SUPPORTING OLD VERSIONS (NOT)

 As a developer, it ’ s easy to think that you should maintain backward compatibility with older
versions of software. It usually makes sense to do this to capture the largest possible audience
and please users.

 However, the WordPress philosophy on maintaining compatibility with old versions is quite
different. In the WordPress development community, backward compatibility may sometimes
even be looked down upon. Users are expected to stay updated with the latest version of the
software. This philosophy comes down to a few key points.

➤

➤

➤

➤

 16

464 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 Users are given an “ update nag ” at the top of their WordPress admin screens, which
prompts them to update.

 There is a multitude of ways to update. Users can even do this with a couple of mouse clicks
from their WordPress admin.

 WordPress core release cycles are frequent, usually every three to four months.

 WordPress doesn ’ t maintain security updates for older versions. Using the latest version is
the only way to be sure you use the most secure version of WordPress.

 For those reasons, a developer should expect users to be as updated as possible when developing
publicly available plugins.

 Being too far ahead of users can also be a bad thing. Some backward compatibility to give users
time to transition between new WordPress versions is good practice. A good rule of thumb is to
maintain backward compatibility for one major release cycle. This way, you stay current with new
WordPress functionality and allow a three - to - four - month window for users to update.

 Some plugins will simply be backward compatible because they use no new functions. However,
if your plugin takes advantage of a function in a new release, you can use the PHP function
 function_exists() to check if the user is using the latest version before executing the specifi c
function.

 Suppose you want to use the WordPress 3.1 function get_users() but also wanted to maintain
compatibility with users still using WordPress 3.0. Your code would look like this.

 < ?php

/* If the get_users() function is available. */
if (function_exists(‘get_users’)) {

 /* Use the get_users() function. */
 $users = get_users();
}

/* If the get_users() function is not available. */
else {

 /* Perform alternate functionality. */
}

? >

 The code snippet uses function_exists() to check if the get_users() function exists. If it does
exist, this means the user is using WordPress 3.1 or a newer version and the plugin can use the
 get_users() function. If the function does not exist, the plugin can fall back to an alternative way
to handle the functionality.

 Keeping Current with WordPress Development

 To be a great plugin developer for the WordPress platform, it ’ s paramount that you keep up with
WordPress development. WordPress is constantly being developed. Not a day will go by without

➤

➤

➤

➤

a core code committer or contributor thinking about or coding solutions for old problems, new
features, or proposing different ideas about the direction of WordPress. It ’ s a large community with
many moving parts and avenues of information.

 At minimum, you need to keep up with the development of the core WordPress code. Some benefi ts
for plugin developers follow:

 Keeping up with new features and functions for use

 Finding out when old functions are deprecated or removed

 Knowing when there ’ s a WordPress bug that affects your plugins

 Staying current with WordPress development is crucial for developing the best plugins. You can
sometimes cut out many lines of code when new features or functions are introduced. You can clean
out old functionality and replace it with new functionality when functions are deprecated. And you
can make your own life easier by not putting in workarounds for WordPress bugs that have been
holding back development of your plugin.

 You should also know how releases are handled within WordPress. Understanding this simple
concept can enable you to know when you need to do an overview of your plugins to see if an
update is needed. The two types of releases are major releases and point (or minor) releases.

 Major releases come in the form of 3.0, 3.1, and 3.2. These releases are made available
every few months with new features, new functions, and bug fi xes. Many code changes are
made between major releases.

 Point releases are minor releases between major releases. Between the version 3.1 and
version 3.2 major releases, you might have versions 3.1.1, 3.1.2, and so on. These releases
are generally bug fi xes and security releases. New functions are rarely added.

 Being involved in the WordPress community can help your plugin development. Many sites and
blogs keep up with development and trends in WordPress. However, the most important place to
keep track of development is the WordPress issue and development tracker: http://core.trac
.wordpress.org . This is where the latest development takes place.

 It may take a little time to understand how the system works, but when you do, you ’ ll probably even
fi nd yourself getting involved in WordPress development. The best way to start learning the system
is to simply start reading each ticket placed on the site and follow the development fl ow.

➤

➤

➤

➤

➤

 It ’ ll be tough to fi nd better ways of becoming a good plugin developer than
getting involved in core WordPress development. It helps you stay on top of new
functionality and gives you an intimate understanding of the core code.

 Deprecated Functions

 A deprecated function is a function being phased out of WordPress. It has been explicitly marked
as something that developers should no longer use in their plugins. Typically, deprecated functions
have a replacement function. PHP functions aren ’ t the only things deprecated in WordPress.
Sometimes fi les and function parameters or arguments are deprecated.

Supporting Old Versions (Not) ❘ 465

466 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 You can usually fi nd deprecated functions within one of several fi les WordPress uses to house these
functions.

 wp - includes/deprecated.php — General deprecated functions

 wp - includes/ms - deprecated.php — Deprecated multisite functions

 wp - includes/pluggable - deprecated.php — Deprecated pluggable functions

 wp - admin/includes/deprecated.php — Deprecated admin functions

 Browsing through the core code for deprecated functions can be tedious at times. It ’ s a good method
for viewing all the deprecated functions. However, you ’ ll most likely deal with deprecated functions
when debugging, which is described later in this chapter.

 Dealing with Obsolete Client Installs

 When you release publicly available plugins, you have no control over whether the users keep their
WordPress installation up to date. When you deal directly with clients, you can communicate
directly with the clients and sometimes have access to their WordPress install.

 If you work with clients who use an outdated version of WordPress, you should consider it your
responsibility to make sure they use the latest and most secure version of WordPress. If the clients
don ’ t want to update, it ’ s always nice to have a handy list of reasons why they should update.

 Some benefi ts to keeping your clients ’ installs updated include the following:

 It makes developing clients ’ plugins easier. It can cut back on development time and cost.

 Your clients use the most secure version, so there ’ s less of a chance of their site being hacked.

 Clients may want you to update the site for them and keep it updated, which can be great
for repeat business.

 If you deal with clients that don ’ t want to update for whatever reason, the biggest thing you can stress
is security. Clients tend to listen when you let them know the horrors of getting their site hacked.

 If upgrading clients ’ sites, the most important thing you can do is keep multiple backups. The
WordPress update process is simple, but the moment you get lazy with backups is usually
the moment you need one.

 DEBUGGING

 One of the biggest problems that plagues WordPress plugins today is that most plugins haven ’ t been
properly debugged. This could be from a lack of understanding of what debugging is, knowledge
about the subject, or motivation to fi x the issues. By following the steps outlined in this section, you
can be a few steps ahead of the competition by simply cleaning up your code.

 Debugging is the act of fi nding “ bugs ” in software. Bugs are errors found within the code. In PHP,
major issues can crash an entire Web page and display an error message on the page. However, some
issues are hidden in many cases. WordPress has a method for exposing these issues.

➤

➤

➤

➤

➤

➤

➤

 As a plugin developer, you should always develop plugins with debugging enabled. Some benefi ts of
debugging include the following:

 Knowing exactly where a bug is in your code

 Fixing minor issues that don ’ t necessarily affect the functionality of your plugin but could
potentially expose larger, unseen issues

 Correcting major issues that affect functionality of the plugin but are tough to fi nd by
browsing the code

 Getting notices when WordPress has deprecated a function, parameter, argument, or fi le

 Don ’ t let the idea of debugging scare you away from doing it. Most debugging issues are minor
problems that take only minutes to correct. Plus, debugging can help you become a better developer
by pointing out common mistakes you might make.

 Enabling Debugging

 In this section, you enable debugging for your WordPress install. You need to enable debugging
whenever developing plugins. It can make your plugin better by letting you know what issues arise
during the development phase.

 In your WordPress install, open the wp - config.php fi le, which is at the root of the install by
default. The wp - config.php fi le will have a line that looks like this:

define(‘WP_DEBUG’, false);

 What this line does is tell WordPress that debug mode should be disabled, so no debug messages should
be shown. You don ’ t want debugging disabled on your development install. You need to enable it.

 To turn debugging on, change false to true . The debugging line in your wp - config.php fi le
should now look like the following.

define(‘WP_DEBUG’, true);

 Enabling debugging makes two important things possible for debugging your plugins:

 Displays debug messages directly on the screen as they happen. This is the default behavior
when WP_DEBUG is set to true .

 Enables you to use the error logging feature of WordPress, which is covered in the “ Error
Logging ” section of this chapter.

 Displaying Debug Messages

 After you enable debugging, view your WordPress install. If you ’ re running any other plugins,
you ’ ll most likely see numerous error messages displayed in various places on the page. This is
because most plugins aren ’ t coded to the standards they should be. You have the advantage of this
chapter, so there ’ s no excuse for any of your plugins to be displaying debug errors.

➤

➤

➤

➤

➤

➤

Debugging ❘ 467

468 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 Now take a look at what a deprecated function looks like when used with debugging enabled.
Suppose you wanted to check if a specifi c taxonomy exists. Prior to WordPress 3.0, the function you
would use for this would be the is_taxonomy() function. However, this function was deprecated
in WordPress 3.0 and a new function was introduced. If you wanted to display a message that the
 “ category ” taxonomy exists pre - 3.0, your code would look like this.

 < ?php

if (is_taxonomy(‘category’))
 echo ‘The category taxonomy exists.’;

? >

 Using this code can produce the debug message shown in Figure 16 - 1.

 FIGURE 16 - 1

 The debug message tells you several things about using the is_taxonomy() function.

 The deprecated function is is_taxonomy() .

 The version the function was deprecated is 3.0.

 The replacement function is taxonomy_exists() .

 This is usually all you need to know to update your plugin ’ s code. To update the code you just used,
you would replace the deprecated function with the given replacement function. In some instances,
no replacement function will be displayed. You ’ ll have to deal with those scenarios on a case - by - case
basis because each might have a different solution.

 To update the use of the is_taxonomy() function with its replacement function, change is_
taxonomy to taxonomy_exists .

 < ?php

if (taxonomy_exists(‘category’))
 echo ‘The category taxonomy is exists.’;

? >

 Making this simple change can bring your code up to date and remove any debug messages relating
to it from the site.

 Correcting Debug Messages

 Most debug messages are created by PHP notices. Some developers may even laugh off notices as
 “ harmless ” issues because they ’ re not crashing the site. Although this may be true to some degree,

➤

➤

➤

some cases actually reveal larger problems with the code. You should consider it your responsibility
to always clear out all debug issues within your plugins.

 In this section, you see three of the most common debug messages and how to fi x each within your
plugins.

 Deprecated WordPress functions

 Undefi ned variable/property notice

 Trying to get property of a nonobject notice

 To see debug messages in action, you must write a bad plugin. This will be the only time in this
book that you ’ ll be prompted to create such horrible code, but you ’ re allowed to do it this time
because it ’ s a learning exercise.

 For this example, keep it simple. Your plugin will attempt to add a post author information
box at the end of posts that shows the author name and description. Create a new plugin fi le
called boj - error - plugin.php in your WordPress plugins directory and add the following code
to the fi le.

 < ?php
/*
Plugin Name: Error Plugin
Plugin URI: http://example.com
Description: Plugin that creates debug errors.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Filter ‘the_content’. */
add_filter(‘the_content’, ‘boj_error_plugin_author_box’);

/* Appends an author box to the end of posts. */
function boj_error_plugin_author_box($content) {

 /* If viewing a post with the ‘post’ post type. */
 if (‘post’ == $post- > post_type) {

 /* Open the author box < div > . */
 $author_box = ‘ < div class=”author-box” > ’;

 /* Display the author name. */
 $author_box .= ‘ < h3 > ’ . get_the_author_meta(‘display_name’) . ‘ < /h3 > ’;

 /* Display the author description. */
 $author_box .= ‘ < p > ’ . get_the_author_description() . ‘ < /p > ’;

 /* Close the author box. */
 $author_box .= ‘ < /div > ’;
 }

➤

➤

➤

Debugging ❘ 469

470 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 /* Append the author box to the content. */
 $content = $content . $author_box;

 /* Return the content. */
 return $content;
}

? >

 Code snippet boj - error - plugin.php

 There are several issues with this plugin. Because you enabled debugging on your WordPress install,
you ’ re probably looking at a screen with three debug messages, as shown in Figure 16 - 2. There are
actually four issues, but one issue isn ’ t revealed because the rest of the code is so bad it never has a
chance to execute.

 FIGURE 16 - 2

 The biggest issue with the code is this line.

if (‘post’ == $post- > post_type) {

 It ’ s trying to check if it’s viewing a post with the post type of post . The fi rst issue is an “ undefi ned
variable ” issue. The $post variable isn ’ t defi ned anywhere. Because it ’ s not defi ned, it defi nitely isn ’ t
an object. You get a Trying to Get Property of Nonobject error in this case. Both of the fi rst two
issues can be fi xed by getting the global $post variable, which is done by adding a single line before
the preceding line.

global $post;

 After fi xing these issues, the third debug message disappears when viewing blog posts but reappears
for other post types such as pages. This message is caused by the next line of the plugin, resulting
in an Undefi ned Variable notice.

$content = $content . $author_box;

 The problem with this line is that the $author_box variable will not always be set. This notice is
one of the issues you ’ ll run into the most and is one the easiest issues to fi x. It is good practice to

either explicitly set your variables early in the function or check if they ’ ve been set before trying to
use them in other parts of your code. In this instance, you use the PHP isset() function to check if
the $author_box variable has been set before appending it to the $content variable.

if (isset($author_box))
 $content = $content . $author_box;

 After fi xing the fi rst three issues, you ’ ll notice a fourth issue appear. The debug message lets you
know that you used a deprecated function: get_the_author_description() . The message also
tells you that it has been replaced by get_the_author_meta(‘ description ’) . This debug message
is caused by this line of the plugin:

$author_box .= ‘ < p > ’ . get_the_author_description() . ‘ < /p > ’;

 Again, this is a simple change. You need to replace only the deprecated function with the new
function. Your new code would look like the following.

$author_box .= ‘ < p > ’ . get_the_author_meta(‘description’) . ‘ < /p > ’;

 Making these small changes clears the plugin of debug messages completely. It can also make the
intended functionality of the plugin work. After completing each change, your code appears as
shown in the following plugin.

 < ?php
/*
Plugin Name: Error Plugin Fixed
Plugin URI: http://example.com
Description: Errors fixed in the “Error Plugin.”
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Filter ‘the_content’. */
add_filter(‘the_content’, ‘boj_error_plugin_author_box’);

/* Appends an author box to the end of posts. */
function boj_error_plugin_author_box($content) {
 global $post;

 /* If viewing a post with the ‘post’ post type. */
 if (‘post’ == $post- > post_type) {

 /* Open the author box < div > . */
 $author_box = ‘ < div class=”author-box” > ’;

 /* Display the author name. */
 $author_box .= ‘ < h3 > ’ . get_the_author_meta(‘display_name’) . ‘ < /h3 > ’;

 /* Display the author description. */
 $author_box .= ‘ < p > ’ . get_the_author_meta(‘description’) . ‘ < /p > ’;

Debugging ❘ 471

472 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 /* Close the author box. */
 $author_box .= ‘ < /div > ’;
 }

 /* Append the author box to the content. */
 if (isset($author_box))
 $content = $content . $author_box;

 /* Return the content. */
 return $content;
}

? >

 Code snippet boj - error - plugin - fi xed.php

 ERROR LOGGING

 WordPress offers another useful tool for debugging your site: error logging. This feature is an
extension of the debugging process previously described. It creates an error log fi le that keeps track
of issues as they happen on your WordPress installation.

 This feature is useful for debugging issues with plugins because it logs each error into a specifi c fi le,
which enables you to easily read through all issues at once. However, perhaps more important, this
is useful for live sites. Generally, you wouldn ’ t display debug messages on a live site, but you might
want to keep track of them in a fi le that ’ s hidden from the eyes of site visitors.

 Enabling Logging

 By enabling error logging, you gain an easy way to keep track of all debug messages on your site.
This can give you an exact debug message and the date/time the error occurred. Error log messages
are saved in a debug.log fi le within the WordPress install ’ s wp - content directory by default.

 To enable error logging, you need to edit your WordPress install ’ s wp - config.php fi le as you did
in the debugging section. You turned WP_DEBUG mode on in that section. Now, you need to turn on
 WP_DEBUG_LOG by adding the following code to the fi le.

define(‘WP_DEBUG_LOG’, true);

 The debugging section of your wp - config.php fi le would now look like this:

define(‘WP_DEBUG’, true);
define(‘WP_DEBUG_LOG’, true);

 What these two lines do is tell WordPress that you want to enable debugging and that debug
messages should be saved in an error log fi le.

 You can also optionally disable the display of debug messages on the site and save them only in the
debug fi le. This is a useful technique if you want to keep track of debug messages on a live site rather
than a development install. To do this, you need to add two new lines to your wp - config.php fi le.

Caching ❘ 473

define(‘WP_DEBUG_DISPLAY’, false);
ini_set(‘display_errors’, 0);

 Setting Log File Location

 When error logging is enabled, WordPress creates a debug.log error log fi le in the wp - content
folder. In most situations, this location and fi lename will work fi ne. However, if you want to change
it to something else, you have the option to do so.

 After enabling error logging, you may optionally add the following line to change the path and fi lename.

ini_set(‘error_log’, ‘/example/example.com/wp-content/logs/debug.log’);

 This tells WordPress that you want your debug log to be in a logs folder. One important thing to
note is that you need to use the correct directory path here rather than a URI path.

 Understanding the Log File

 The debug.log fi le created by enabling error logging can be read with any basic text editor, so you
shouldn ’ t have any trouble opening it and reading its contents.

 In the “ Debugging ” section, you created an error plugin. You also learned how to correct debug
messages displayed on the screen. The error log fi le is another way to view those debug messages,
and the messages saved in the log fi le will look much the same as what you saw onscreen. Following
is a view of a log fi le that the error plugin you created would produce when fi rst using it.

[27-Oct-2010 16:07:37] PHP Notice: Undefined variable: post in
 C:\xampplite\htdocs\wp-content\plugins\boj-error-plugin.php on line 18

[27-Oct-2010 16:07:37] PHP Notice: Trying to get property of non-object in
 C:\xampplite\htdocs\wp-content\plugins\boj-error-plugin.php on line 18

[27-Oct-2010 16:07:37] PHP Notice: Undefined variable: author_box in
 C:\xampplite\htdocs\wp-content\plugins\boj-error-plugin.php on line 34

 As you can see, each message creates a new line (or entry) within the fi le. The message looks nearly
the same as what you looked at in the “ Debugging ” section. The only exception here is that you
have an exact time and date of when the issue occurred.

 After reading through your error log messages, you need to revisit the “ Debugging ” section to work
through the issues. One thing about the error log is that messages aren ’ t cleared from the fi le after
you ’ ve fi xed the issue on the site. Notice the timestamp as you clear away issues so that you ’ re not
looking for issues you ’ ve already fi xed.

 CACHING

 Caching is a way to store data for later use. People use many different types of caching and different
methods to cache data on their sites. You would typically save data that ’ s expensive to generate so
that it can be loaded quickly whenever it ’ s needed. It ’ s a way to optimize page load times.

474 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 Rather than focusing on building in caching within individual plugins, WordPress provides a
method for plugins to handle caching. WordPress has the WordPress Object Cache feature, which
is a PHP class that plugins can use for storing data. WordPress doesn ’ t store this data on its own.
It provides a way for caching plugins to cache the data. This method allows for different caching
solutions based on user needs.

 Two great benefi ts exist for using WordPress ’ built - in method for caching.

 There ’ s a single set of functions that all plugins can use without confl icting with other
plugins.

 Caching plugins can be created to handle persistent caching, which saves data across
 multiple page views.

 Using the WordPress Object Cache will not speed up your plugins directly. By default, cached data is
saved only for the web page view it is executed on. For example, you could store data once and use
it multiple times on a single page without having to execute the same code. When using a persistent -
 caching plugin, this data can be stored and accessed across multiple page views.

 The biggest reason to use this system is that it enables your plugin users to choose the caching
method that benefi ts them the most or works with their server setup the best. WordPress simply
provides the needed functions as an all - encompassing API that multiple plugins can use.

➤

➤

 In Chapter 7, “ Plugin Settings, ” you learned how transients work. Transients are
a way to ensure that data is cached for a specifi c amount of time. However, if a
user has installed a persistent - caching plugin, transients will be served using the
WordPress Object Cache.

 Saving, Loading, and Deleting Cached Data

 WordPress provides several easy - to - use PHP functions for working within the caching system.
Each function enables you to save, update, load, or delete cached data. There are other cache - related
functions than what ’ s provided in this chapter; however, the functions you’ll learn are the functions
you ’ ll use the most often.

 Each function uses at least one of the following parameters.

 $key — A unique ID to store and retrieve data by. The cache key doesn ’ t need to be unique
across multiple cache groups, but it must be unique within an individual group.

 $data — The data your plugin wants to save and retrieve.

 $group — A way to group multiple pieces of cached data. For example, multiple cache keys
can be grouped together. This parameter is optional.

 $expire — How long the data should be stored in seconds. This parameter is optional and
defaults to 0 , allowing the data to be stored indefi nitely.

➤

➤

➤

➤

Caching ❘ 475

 wp_cache_add()

 The wp_cache_add() function should be used when your plugin needs to store data to a cache key
that doesn ’ t already exist. If the cache key does exist, no data will be added.

 < ?php
wp_cache_add($key, $data, $group, $expire);
? >

 wp_cache_replace()

 The wp_cache_replace() function enables plugins to overwrite previously saved data for the cache key.

 < ?php
wp_cache_replace($key, $data, $group, $expire);
? >

 wp_cache_set()

 The wp_cache_set() function is a combination of the wp_cache_add() and wp_cache_replace()
function. If the data for the cache key is not already saved, it will create it. If it does exist, it will
overwrite the preexisting data.

 < ?php
wp_cache_set($key, $data, $group, $expire);
? >

 wp_cache_get()

 The wp_cache_get() function provides a way for plugins to load cached data by cache key and
group. It returns false if no data is found. It returns the cached data if it exists.

 < ?php
wp_cache_get($key, $group);
? >

 wp_cache_delete()

 The wp_cache_delete() function clears cached data for the specifi ed cache key and group. It
returns true if the data was successfully removed and false if not.

 < ?php
wp_cache_delete($key, $group);
? >

 Caching Data Within a Plugin

 In this section, you create a simple plugin that caches a list of related posts to append to the content
of single post views. Each blog post on the site stores its data with a unique cache key based on the
post ID in a boj_related_posts cache group.

476 ❘ CHAPTER 16 DEBUGGING AND OPTIMIZING

 Use two of the caching functions for this simple exercise. Use the wp_cache_set() function to
cache the related posts list and the wp_cache_get() function to get the cached posts.

 Your new Cache Related Posts plugin has a fi lename of boj - cache - related - posts.php .

 < ?php
/*
Plugin Name: Cache Related Posts
Plugin URI: http://example.com
Description: A related posts plugin that uses the object cache.
Version: 0.1
Author: WROX
Author URI: http://wrox.com
*/

/* Add related posts to the content. */
add_filter(‘the_content’, ‘boj_cache_related_posts’);

/* Appends a list of related posts on single post pages. */
function boj_cache_related_posts($content) {

 /* If not viewing a single post, return the content. */
 if (!is_singular(‘post’))
 return $content;

 /* Get the current post ID. */
 $post_id = get_the_ID();

 /* Get cached data for the specific post. */
 $cache = wp_cache_get($post_id, ‘boj_related_posts’);

 /* If no data has been cached. */
 if (empty($cache)) {

 /* Get the post categories. */
 $categories = get_the_category();

 /* Get related posts by category. */
 $posts = get_posts(
 array(
 ‘category’ = > absint($categories[0]- > term_id),
 ‘post__not_in’ = > array($post_id),
 ‘numberposts’ = > 5
)
);

 /* If posts are found. */
 if (!empty($posts)) {

 /* Create header and open unordered list. */
 $cache = ‘ < h3 > Related Posts < /h3 > ’;
 $cache .= ‘ < ul > ’;

 /* Loop through each post, getting a link to its single post page. */

 foreach ($posts as $post) {
 $cache .= ‘ < li > < a href=”’ . get_permalink($post- > ID) . ‘” > ’ .
 get_the_title($post- > ID) . ‘ < /a > < /li > ’;
 }

 /* Close the unordered list. */
 $cache .= ‘ < /ul > ’;

 /* Cache the related post list for 12 hours. */
 wp_cache_set($post_id, $cache, ‘boj_related_posts’, 60 * 60 * 12);
 }
 }

 /* If there’s cached data, append it to the content. */
 if (!empty($cache))
 $content .= $cache;

 /* Return the content. */
 return $content;
}

? >

 Code snippet boj - cache - related - posts.php

 The fi rst cache function used in the plugin was wp_cache_get() . It checks if a list of related posts
has been cached using the key of the current post ’ s ID, $post_id . It also checks if this data has been
stored in the boj_related_posts group. If the related posts are saved with that specifi c key and
group, this list is appended to the content. It bypasses the need to regenerate the related posts list.

 The wp_cache_set() function caches the related posts list for later. This enables the posts list to
be retrieved with the wp_cache_get() function. It is used after the related posts list was created.
The list was then saved based on the post ’ s ID and the boj_related_posts group. You also set a
12 - hour time limit on the cached data.

 Basic caching functionality usually requires only two things, which this plugin does:

 Check if there ’ s any cached data. If so, use that data and skip over the functionality
required to generate it.

 If no cached data exists, generate and cache it. It can then be used later.

 SUMMARY

 Entire books could be written on debugging and optimization alone. The purpose of this chapter
was not to cover every possible avenue you may take. The goal was to present you with a starting
point to work from and to give you a look into the features that WordPress provides.

 Some of the most important things you can do are keep updated, debug your plugins, and use the
built - in cache system. Your plugins can use the most up - to - date functionality, be less prone to
issues, and make users happy by working with their preferred caching solution. All these things
require little time and can make your plugins better.

➤

➤

Summary ❘ 477

Marketing Your Plugin

 WHAT ’ S IN THIS CHAPTER?

 Choosing a license for your plugin

 Submitting your plugin to the plugin repository

 Promoting your plugins

 Getting involved in the WordPress community

 Some of the most popular WordPress plugins aren ’ t necessarily the best - coded or most useful
plugins. Sometimes they ’ re simply more popular because the developer has a knack for great
marketing. You may have the most solidly coded, optimized, and useful plugin in the world,
but without a little marketing or some luck, no one will know your plugin exists. Having
others recognize your work and put it to use is the ultimate goal.

 Developers aren ’ t known for their marketing skills. They ’ re known for their ability to code
useful things for sites, if they ’ re known at all. Because the average user doesn ’ t know the
difference between a PHP variable and function, you ’ re not going to wow them with how
great your code is. Unfortunately, it ’ s not that easy to promote a plugin. If it were, all great
coders would be marketing experts.

 As a plugin developer in the WordPress community, you need to play the role of developer
and marketer. Don ’ t worry. You don ’ t need a marketing or communications degree to
promote your plugin. Sure, it ’ ll take some work, but the goal is to get people to use your
plugins. The methods discussed in this chapter are simple things anyone passionate about
their work can do.

 Whatever your motivation for developing plugins is, whether it be money, popularity, or a
desire to share something useful with others, this chapter can help put you on the path to
making your plugins visible to the larger WordPress community.

➤

➤

➤

➤

 17

480 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 CHOOSING A LICENSE FOR YOUR PLUGIN

 WordPress isn ’ t without its own licensing issues and debates. It ’ s rare that a week goes by without a
heated argument about licensing cropping up. The biggest issue has been about how plugins and themes
should be licensed. Some clear lines have been drawn, and some not - so - clear lines, and developers
are always looking for loopholes and workarounds to the license WordPress is under. You won ’ t be
presented with too much ideology here, though. This section is about choosing a license that benefi ts
your plugin from a marketing angle.

 WordPress is licensed under the GNU General Public License (GPL), which is an open source
software license. This license is preserved and protected by the Free Software Foundation (FSF).
WordPress is licensed under the GPL because its predecessor, b2/cafelog, was licensed under the
GPL. WordPress is a fork of this software and must retain the software ’ s original license.

 The GPL is a license that protects users ’ freedoms. It grants users the power to copy, modify, and
share the software so long as they pass along the same freedoms they ’ ve been granted by including
the GPL in copies that they share with others. This is essentially the basis for any open source
software. The idea is to protect the users ’ freedoms to take these actions.

 Diff erent Options

 Most plugins will be licensed under the GPL. It ’ s the easiest licensing choice and offers no confl icts
with WordPress because WordPress is licensed under the GPL.

 Although the GPL is the license generally used by most developers in the community, alternative
options are available to you that do not confl ict with the GPL or the ideals of open source software.
These licenses are GPL - compatible licenses. If you choose to do so, you may license your plugin
under one of these licenses.

 The GNU site keeps a list of GPL - compatible licenses that you may use for your plugins: http://www
.gnu.org/licenses/license-list.html . Some of the more popular licenses include:

 LGPL

 Apache

 MIT (X11)

 BSD

 Although these are popular open - source licenses, you won ’ t fi nd many WordPress plugins licensed
under them. Most will be licensed under a version of the GPL. However, you do have alternatives
available to you that are non - GPL but compatible. You should also choose a license that best
represents your plugin.

 Plugins may also be dual - or split - licensed.

 Dual — Releasing the plugin under two licenses. Each of these licenses must be compatible
and all the code in the plugin would fall under both licenses.

 Split — Separating different parts of the plugin under different licenses. Certain parts
may be licensed differently than other parts. This is sometimes an option when including

➤

➤

➤

➤

➤

➤

Choosing a License for Your Plugin ❘ 481

JavaScript, CSS, or image fi les that don ’ t require WordPress to be used. The FSF has stated
that these fi les don ’ t always require a GPL - compatible license.

 All plugins submitted to the WordPress.org plugin repository (described later in this chapter) must
be licensed completely under a GPL - compatible license. You cannot use any license that is not
compatible with the GPL, even if it ’ s legal to do so. This is simply the WordPress.org site ’ s policy on
plugin submission.

 Why It Matters

 WordPress has always been a piece of software that ’ s representative of user freedom. WordPress
wouldn ’ t exist if the original software weren ’ t licensed under the GPL, which enabled it to be forked
into the software that it is today. The goal is to not restrict what users can do with the software
when they receive it. It ’ s about granting users freedom. They should be able to modify, copy, and
share the software with others without restriction.

 If you plan to create a plugin for WordPress and want to place additional restrictions on how
your plugin or its code can be used, WordPress is likely not the best platform to develop on top of.
The GPL license WordPress is placed under is meant to remove restrictions on how the user can
use the software.

 None of the authors of this book are legal professionals, so the purpose of this book is not to give
you legal advice about licensing your plugin. However, if you decide to use a GPL - incompatible
license, you may be setting yourself up for legal issues.

 Aside from any legal implications, licensing your work under a GPL - incompatible license is one of
the worst things you can do for good publicity for your work in the WordPress community. At best,
your plugin won ’ t be allowed within offi cial channels. At worst, you and your work might be looked
upon as outcasts within the community. Neither of these things is desirable when trying to market
your plugin.

 The biggest benefi ts of licensing your plugins under the GPL or a GPL - compatible license follow:

 Protect users ’ freedoms — Enables your users to edit, copy, and share changes with others
without restrictions other than passing along those same freedoms.

 Help developers learn — Other developers can learn from your code if you allow it to be
open, which allows them to improve upon and release more plugins to the community.

 Improvement — Keeping your code open means that others may use it for other purposes,
which may allow them to fi nd bugs or distribute improvements under the same license. You
can then use this code to improve your own work.

 Use others ’ code — You ’ re free to take, modify, and distribute other GPL - licensed code
within your work. This enables you to build upon the work of others rather than coding
everything from scratch.

 Avoid legal issues — Because WordPress is licensed under the GPL, you won ’ t have any
issues with the copyright holders.

 Community acceptance — GPL - licensed plugins enable your work to be accepted into the
community.

➤

➤

➤

➤

➤

➤

482 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 Perhaps most important for marketing is the last point. To get your plugin work out there, it ’ s
best to be accepted by the community. If you want your work to be known, arguing licensing issues
with the people who work on and improve WordPress every day is probably not the best route
to take.

 Even if you don ’ t agree with the opinions of others, the WordPress philosophy, or the license, you
should respect it. It ’ s important that you not alienate yourself by not respecting the people who have
contributed code to WordPress (the copyright holders).

 Making Money While Using the GPL

 WordPress and any work licensed under a GPL - compatible license are referred to as free software.
The term “ free ” here refers to user free dom. It does not mean that your plugins cannot cost money.
You can charge a fee for transferring the plugin to others or charge money for client work. You can
even build an entire business around open source, free, code if you choose to go that route with your
plugin work. You are not restricted from building a business on top of WordPress. Many developers
have extremely successful businesses that align perfectly with the GPL license.

 The license WordPress uses is about the distribution of code. One of the largest misconceptions
about the GPL is that it ’ s not good for client or private work. Many potential clients and businesses
don ’ t understand that this is not an issue. Because the license comes into effect only at the moment
of distribution, the license of the work isn ’ t relevant because you ’ re not distributing it. You ’ re not
required to release work you do for clients under a GPL - compatible license. You can assure your
clients that any work you do for them won ’ t be released elsewhere.

If you decide to publish your work under a GPL - incompatible license, it is
your responsibility to seek professional legal advice rather than relying on the
opinions of others or this book.

 SUBMITTING TO WORDPRESS.ORG

 WordPress.org is the central Web site for the WordPress software. This site hosts a plugin repository
where thousands of plugins are available for download by millions of WordPress users. This is the
place where most users download plugins, so having plugins on this repository opens up numerous
possibilities for getting your work known by others.

 All WordPress plugins on the repository are hosted at http://wordpress.org/extend/plugins as
shown in Figure 17 - 1. This repository page lets WordPress users search for plugins; check out
featured plugins; and browse through lists of the most popular, newest, and recently updated
plugins.

Submitting to WordPress.org ❘ 483

 The plugin repository handles many of the things you ’ d have to develop and maintain if you weren ’ t
using the plugin repository. If you ’ re developing a publicly available plugin, there aren ’ t many
reasons to not use the offi cial plugin repository.

 Some of the benefi ts of hosting your plugin on the WordPress.org plugin repository include the
following:

 User trust — Your work is on the “ offi cial ” repository, so there ’ s a level of trust from users
that you ’ ll earn just by hosting the plugin there. This is something that ’ s harder to build by
hosting your plugin on your own site or elsewhere.

 Easy updates — You don ’ t have to build an update script within your plugins or force
your users to manually update them. Users can update plugins with a few clicks from their
admin panel.

 Version control — Plugins are placed in a Subversion repository, which makes updating
your plugin easy. The plugin repository is updated every 15 minutes, so plugin updates go
live quickly.

 Stats — You can view the number of times your plugin has been downloaded throughout its
history and the percentage of users currently using each version.

 Compatibility — The repository enables users to click a Works/Doesn ’ t Work button to let
you know if each version of the plugin works with specifi c versions of WordPress.

 Ratings — Users can rate your plugins on a star - based rating system, which enables you to
get a feel for how well your plugin is received by users.

 Plugin information — You can share all relevant information about your plugin for users
directly on its page in the repository, which makes including instructions easy.

➤

➤

➤

➤

➤

➤

➤

 FIGURE 17 - 1

484 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 Forum integration — All plugins on the repository are integrated with the support forums,
so you can keep track of and answer support questions directly on the WordPress site.

 Donation link — You can provide a link so that users can donate money to you if they
want.

 Imagine having to handle all those things yourself. It would be a lot of extra work just to publish
a plugin. Of course, you don ’ t have to use the offi cial repository to host your plugins. It ’ s simply a
great tool for plugin developers to get their work out to the public easily.

 Your goals may not include releasing plugins for public use. Perhaps you ’ re more interested in
developing plugins for clients. You may be thinking that submitting work to the WordPress.org
repository doesn ’ t apply to you. To a degree, this is true. However, you should look at this as an
opportunity to promote yourself or your company. One of the easiest ways to let others see the
level of work you ’ ll provide professionally is to release some work back to the public for free. It gets
some examples of your work out there, which lets you start a portfolio and may result in future
client work.

 Creating an Account

 Anyone with a user account at WordPress.org can submit plugins and use many other features of the
Web site. Even if not hosting your plugins on the site, you ’ ll want to have an account there. This can
provide you with many useful tools.

 Registering a new account is easy and takes only a few simple steps. After you set up a new account,
you can submit plugins to the offi cial repository.

 1. Visit http://wordpress.org/support/register.php .

 2. Enter your information into the required fi elds.

 3. Check your email inbox for a confi rmation email and password.

 4. Follow any additional instructions provided in the email.

 Submitting a Plugin

 Before being allowed to host your plugin on the plugin repository, you must submit your plugin
idea for approval. This process is painless, and plugins are typically approved within a few days,
sometimes even within a few hours of submission.

 As shown in Figure 17 - 2, you must submit a plugin name, description, and URL (optional) to
 http://wordpress.org/extend/plugins/add .

 After you submit your plugin, your plugin gets a new page specifi cally for it on the repository at
 http://wordpress.org/extend/plugins/plugin-name where plugin - name is the plugin ’ s folder
name. This is the permanent link to your plugin on the repository, which is where users can read
about and download the plugin.

➤

➤

Submitting to WordPress.org ❘ 485

 Setting Up SVN

 All plugins on the WordPress plugin repository are hosted on a Subversion repository, which is a
version control system. You need to learn how to use Subversion to add and update your plugin fi les
on the plugin repository.

 You can fi nd a brief introduction to using Subversion on the site at http://wordpress.org/extend/
plugins/about/svn , which should give you enough of an understanding of using Subversion for the
repository. However, it ’ s all done via the command line. Most plugin developers use a Subversion
client to check out (get plugin fi les) or commit (add or update plugin fi les). Subversion clients provide
easy - to - use interfaces for using Subversion.

 Numerous Subversion clients are available for different operating systems. Two of the most popular
Subversion clients for Windows and Mac are listed here, but you can experiment with other clients
and fi nd the tool that suits you best.

 TortoiseSVN (Windows) — http://tortoisesvn.net

 Versions (Mac) — http://www.versionsapp.com

➤

➤

 FIGURE 17 - 2

486 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 The purpose of this section isn ’ t to teach you how to use Subversion. There ’ s a freely available
Subversion book available online for learning how to use it at http://svnbook.red-bean.com/
nightly/en/index.html . Learning at least the basics of Subversion is something you need to do to
host your plugin on the repository.

 All plugins on the repository are given a unique Subversion URL: http://plugins.svn
.wordpress.org/plugin-name , where plugin - name is the name of the plugin folder. You
will have access to that specifi c directory in the repository. To add and update fi les and folders
with your preferred Subversion client, you need to use your WordPress.org username and
password for authentication.

 Creating a readme.txt File

 Plugins on the WordPress plugin repository are required to have a readme.txt fi le included in the
plugin ’ s top - level directory. The repository loads information from this fi le to build the plugin ’ s page
in the repository. This is the information provided to the public, so you want it to be informative
and useful for potential users.

 The readme.txt fi le creates the sections for the plugin, as shown in Figure 17 - 3.

 FIGURE 17 - 3

 Your plugin ’ s readme.txt fi le needs to be submitted using Markdown syntax. Markdown
is a tool for converting text to HTML on the Web and uses specifi c markup. You can
learn how to use the syntax on the Markdown project page at http://daringfi reball
.net/projects/markdown/syntax .

Submitting to WordPress.org ❘ 487

 Following is an example readme.txt fi le for plugins, which you can modify for your plugins.

=== Example Plugin Name ===
Contributors: username
Donate link: http://example.com
Tags: example, example-2, example-3
Requires at least: 3.0
Tested up to: 3.1
Stable tag: 1.0

Write a short plugin description no longer than 150 characters.

== Description ==

Write a long description of the plugin. Shown on the main plugin page.

== Installation ==

Provide installation instructions for the plugin.

== Frequently Asked Questions ==

= Example question? =

An answer to the example question.

== Screenshots ==

1. Screenshot caption for screenshot-1.png.
2. Screenshot caption for screenshot-2.png.

== Changelog ==

= Version 1.0 =

* Change since previous version.
* Another change since previous version.
* One more change since previous version.

== Extra ==

Provide an extra section(s) if needed for your plugin.

 Code snippet readme.txt

 The most important section of the readme.txt fi le is the fi rst section of the fi le, which is where you
add your plugin information.

=== Example Plugin Name ===
Contributors: username
Donate link: http://example.com
Tags: example, example-2, example-3

488 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

Requires at least: 3.0
Tested up to: 3.1
Stable tag: 1.0

 The fi rst line should be your plugin ’ s name. Each of the following lines have specifi c meanings that
you need to make sure are correct.

 Contributors — Comma - separated list of WordPress.org usernames that should have access
to update the plugin. If you ’ re the only developer, only add your username. If you ’ re working
with others, each person needs a WordPress.org account to add their username.

 Donate link — A custom link you can provide for users to send you donations for your hard
work on the plugin.

 Tags — Comma - separated list of tags that cover the functionality of your plugin. You can
fi nd a list of popular tags at http://wordpress.org/extend/plugins/tags .

 Requires at least — The minimum version of WordPress a user must have installed to use
the plugin.

 Tested up to — The latest version of WordPress your plugin has been tested against.

 Stable tag — The version number for the most up - to - date and stable version of your plugin.

 Other sections of the readme.txt fi le are less important than the fi rst section but are vital to
creating a great page for your plugin on the repository and getting users to download and use your
plugin. These sections are also much more open to what you ’ d like to write and aren ’ t as specifi c as
the fi rst section.

 Description — Perhaps the most useful section of the readme.txt fi le, the description section
represents what ’ s shown on the main page for your plugin. This is the section that you should
use to grab a user ’ s attention by describing your plugin, listing its features, and including any
vital notes that a user must see.

 Installation — This section enables you to provide detailed installation instructions. Most
users know how to install plugins, but documentation on any extra steps about setup (or
even upgrading) can be provided here.

 Frequently Asked Questions — Whenever you start noticing the same questions asked about
using the plugin, you can begin documenting those questions and the answers to them here.
This can help cut back on potential support issues.

 Screenshots — Not all plugins have screenshots. However, if possible, it ’ s always nice to
give users something to look at to garner their interest. Screenshots must be included in the
top - level directory of the plugin and numbered like this: screenshot - 1.png , screenshot -
 2.png , and so on. (You can use png , jpg , jpeg , or gif images.)

 Changelog — This is a section to document what changes have been made to the plugin
from version to version. Providing this information gives you and your users a clear history
of version changes.

 Extra — You may also optionally include extra, arbitrary sections to your readme.txt fi le
if your plugin requires any additional information.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Getting Your Plugin Renowned ❘ 489

 GETTING YOUR PLUGIN RENOWNED

 The difference between good developers and great developers sometimes comes down to one thing:
passion. If you develop plugins or do work that you ’ re not passionate about, that lack of passion
will show through with your work and the promotion of your work. It ’ s easy to be involved in the
community and market your work if you ’ re passionate about that work.

 Sometimes passion isn ’ t quite enough when starting. You can do certain things to promote your work.
By reading through this section of the chapter, you can gain a base set of tools and methods for getting
your plugins renowned. But, you need to want to promote your work.

 You won ’ t fi nd quick fi xes, tricks, or false promises in this section of the chapter. Everything presented
here are methods and techniques that great plugin developers focus on almost every day — the things
anyone can do by simply putting in the time.

 Naming Your Plugin

 Naming your plugin can be one of the toughest parts of the process to create a plugin. There are no
defi nite rules to naming a plugin, but you can follow some general guidelines to choose a name.

 A great plugin name can help your plugin in many ways when you start with developing plugins. If
you, your company, or your work is not widely known, use this opportunity to create a great name
to help put your work on the map.

 Tips on Creating a Plugin Name

 You should be mindful of four things when creating a solid plugin name. Your plugin name should
be the following:

 Relevant — Be sure your plugin name is actually descriptive of what your plugin does.

 Catchy — Having a unique plugin name might catch users ’ eyes simply because it ’ s unusual.
Be careful when being catchy, though; relevancy is more important.

 Simple — Keep your plugin name short, simple, and easy to pronounce. You want your
work to be shared. Don ’ t make it too tough to spell.

 Memorable — The plugin name should be easy to remember. Don ’ t put complicated words
or phrases in the title.

 The most important thing you can do is have a descriptive name. If you name your plugin something
that ’ s completely unrelated to the functionality of the plugin, users might not give it a second look,
even if they ’ re searching for the exact functionality your plugin provides.

 Suppose you ’ ve built a plugin that integrates Twitter features into the comments fi eld on a blog. Which
of the following plugin names will more likely catch a user ’ s attention and describe your plugin?

 Comment Form Tools

 Twitter Comments

 Awesome, Super - Cool Twitter Comments

➤

➤

➤

➤

➤

➤

➤

490 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 Believe it or not, each of these plugin names has merit. It ’ s up to you to decide which best fi ts your
plugin and how you want to market it.

 Comment Form Tools — If you plan to extend the plugin in the future to include non -
 Twitter features, you might consider a more general name for the plugin.

 Twitter Comments — This name is short and descriptive. It ’ s most likely the best choice of
the three. You cannot go wrong with this choice.

 Awesome, Super - Cool Twitter Comments — This breaks the rule of keeping the name
short, but it ’ s catchy. Users might download this plugin for its unusual name alone.

 How to Not Name Your Plugin

 One of the worst things you can do when naming your plugin is to confuse potential users. Tons of
WordPress plugins are out there, so you don ’ t want your plugin ’ s name to be too similar to another
plugin ’ s name. Before releasing your plugin, you should research similar plugins to make sure there
are no potential naming confl icts.

 You shouldn ’ t use some words in your plugin name:

 WordPress — It ’ s already a WordPress plugin, so there ’ s no need to use “ WordPress ” in the
name. You should probably avoid using “ WP ” as well.

 Plugin — There ’ s no need to repeat that your plugin is a plugin, so this isn ’ t helpful at all
when naming a plugin.

 Version — You shouldn ’ t add the plugin version information to the name. WordPress has a
place for version numbers as described in Chapter 2, “ Plugin Foundation. ”

 Offensive Words — This should seem like a no - brainer, but it ’ s worth noting here. Don ’ t
alienate users by using potentially offensive words in your plugin name.

 What words not to use in a plugin name usually just comes down to using a little forethought. Don ’ t
include things the user will already know or anything that might offend a user.

 Branding Your Plugin

 Generally, you wouldn ’ t add your name or company name within the plugin title. As described
in Chapter 2, there are relevant places to add this information to your plugin. However, it can
be a useful branding technique that enables users to easily identify plugins made by you or your
company. You can never underestimate the power of branding your plugins in this way. If your work
is good (and it should be because you ’ re reading this book), your company name can add an extra
 “ gold label ” to the plugin that ’ s recognizable as quality work.

 Suppose your company ’ s name is Radioactive. A good way to brand your plugins is to prefi x your
plugin name with your company name. Following is a list of fi ctional plugin names that could be
used to your advantage in terms of marketing.

 Radioactive Twitter Comments

 Radioactive Related Posts

 Radioactive Music Collection

 Radioactive Profi le Widget

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Getting Your Plugin Renowned ❘ 491

 This technique also removes the possibility of user confusion when browsing plugins with similar
names. It ’ s doubtful that other developers will use “ Radioactive ” in their plugin names.

 Building a Web Site

 If you do not have a personal blog or Web site, you ’ re missing out on one the easiest promotional
methods available. Your site should also be running on WordPress. Yes, there are sites that provide
WordPress work while running a different content management system. Running your site on
something other than WordPress does little to help the legitimacy of your work. You can ’ t expect users
to trust that you ’ re creating quality WordPress plugins if you ’ re not using WordPress for your own site.

 Creating a Page or Site for All Your Plugins

 With your own site, you can create a page that showcases all your plugins. You ’ ll be in control of
how they ’ re presented to the world from one central location. Some things you can do to present
plugins on your plugins page include the following:

 Listing plugin names and descriptions with links to their individual plugin pages.

 Showing thumbnail images or screenshots from your plugins.

 Creating a catchy welcome/intro message on why using one of your plugins would be
benefi cial.

 You can also set up an entire site dedicated to a single plugin or all your plugins. One of the
best Web site examples you ’ ll see dedicated to a plugin is the Gravity Forms site (http://www
.gravityforms.com) as shown in Figure 17 - 4. The front page features eye - catching screenshots
while providing useful information to the visitor.

➤

➤

➤

 FIGURE 17 - 4

492 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 Having a Great Design

 Unfortunately, not all developers are great designers, but design plays an important role in
marketing. You don ’ t need to have a fl ashy design or the most creative design on the Web.
Sometimes a simple design with relevant information can be better than anything fl ashy. Great
designs never get in the way and enable the site ’ s content to stand on its own.

 If you don ’ t have a single design bone in your body, you may consider hiring a professional
designer to design your Web site and plugin pages. You may trade some development work for
design work. Hiring a designer within the WordPress community may even earn you a friend
within the community who can help promote your work. You should always look for ways to form
relationships with others within the community.

 Blogging About WordPress

 You don ’ t need to build a site just for promoting your plugins. A great way to make your work
more popular is by blogging about WordPress. There ’ s no doubt that you ’ ll come up with nifty
code snippets and ideas while developing plugins. Sharing these things on your blog can help grow
your user base. If you produce quality work on your blog, people will notice. This makes getting a
foothold in the plugin world much easier. You ’ re indirectly promoting your work by being helpful
to others.

 Even if you just want a break from code, you can run a WordPress - specifi c blog that doesn ’ t share
code tutorials. You can blog about current WordPress events and news, and hold thought - provoking
discussions. The purpose of blogging about WordPress is to be involved in the community by
sharing your ideas and knowledge. The WordPress community loves reading great blogs about
WordPress. Creating your own WordPress blog can help promote your work.

 Creating a Page for Your Plugin

 You ’ ve covered how to set up a page for your plugin on the WordPress.org plugin repository. This
is something useful for promoting your work. However, you ’ re competing with thousands of other
plugins on the repository. Your plugin can quickly become hidden in the sheer mass of available
options, which can make it tough for users to fi nd your plugin.

 A dedicated page on your Web site for individual plugins can work wonders for your plugin
marketing. The most important thing you can do when building a page on your Web site for a
plugin is to keep the information presented relevant and descriptive of what functionality your
plugin provides. This information needs to be easily accessible.

 Provide an accessible download link for your plugin. You ’ d be surprised how many develop-
ers create great plugin pages but forget the most important thing.

 Write a clear description of what your plugin does.

 Offer documentation and tutorials.

 Link to related WordPress documentation if helpful.

 Keep a dedicated changelog of the history of your plugin.

➤

➤

➤

➤

➤

Getting Your Plugin Renowned ❘ 493

 Display screenshots of the plugin in action if possible.

 Link to the plugin ’ s page on the WordPress.org plugin repository if your plugin is hosted
there.

 Announcing Your Plugin

 Announcing your plugin is also one of the most important things you can do to let others know that
you ’ ve built a new WordPress plugin. If you don ’ t have a blog or Web site, you should. This should
be the fi rst place you announce your plugin. The people most likely to freely promote your work
are your blog readers. Some of them will have their own blogs and will write a post to announce it.
Others will post links to your plugin on social networking sites.

 The fi rst step to promoting a new plugin should always be announcing it on your blog. When
announcing your plugin, you should stick to writing about the plugin. Throwing it in as an
afterthought to a blog post about other things won ’ t get it much attention. The post should be
entirely dedicated to the plugin. This provides an opportunity for you to give readers a great
description of what the plugin does and why they should use it.

 Some other things you can do when announcing a plugin include the following:

 Get other WordPress blog writers to perform a review of the plugin.

 Announce its release on social networking sites, such as Twitter.

 Post its release on WordPress - specifi c forums and message boards.

➤

➤

➤

➤

➤

Announcing a new plugin on your blog is also a bit of an unspoken tradition in
the WordPress community. Developers just do it because everyone else does, so
it ’ s an expectation for new plugins.

 Supporting Your Plugins

 Ideally, if your plugin is well coded and easy to use, you won ’ t have to offer much support. However,
there will always be users who can ’ t quite get it to work, don ’ t understand specifi c instructions, or
want to customize something. Offering support for your plugins creates an opportunity for you to
become more popular among users.

 If you ’ re building plugins professionally, you need to consider creating a dedicated support channel
on your Web site. This can be a ticket system, support forums, or some other type of support
system. You may even opt to offer commercial support. Email may work as a support system when
you ’ re just starting out, but after your work becomes more popular, emails can quickly become
tough to manage.

 If you ’ re just releasing plugins for fun or noncommercially, running support from your own site
may seem like overkill. All plugins added to the WordPress.org repository (described earlier in this

494 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

chapter) are tied into the WordPress support forums (http://wordpress.org/support). You can use
these forums to offer support for your plugins and not worry about running support from your site.

 Following are several benefi ts to offering support for your plugins:

 Build a relationship with your users. These users might tell their friends or blog about your
plugin.

 Find bugs with your plugins. No plugin will ever be perfect. Investigating user issues can
help you fi nd bugs.

 If building your own support system, you have control over the rules and can run support in
a manner that fi ts best with how you want to run things.

 Getting Feedback

 Feedback from users and other developers is essential to creating great plugins. You ’ re the developer
of the plugin, so you probably know the code inside out and can use the plugin with no problems.
Not everyone is looking at the plugin from your point of view, though. Feedback is a great way to
see how others use your plugin.

 Many support questions you encounter come down to a user not understanding how something
works rather than a code issue. Listening to user feedback enables you to fi x user experience issues
that aren ’ t easily seen by plugin developers.

 Feedback is a large component in making WordPress a better platform. Following is a list of avenues
users may take to give feedback to WordPress, which serve as great examples of how to handle
feedback.

 Ideas (http://wordpress.org/extend/ideas) — A forum to present, discuss, and rate
ideas for the core WordPress code.

 Kvetch! (http://wordpress.org/extend/kvetch) — Anonymous feedback system for users
to praise or complain about WordPress.

 Requests and Feedback (http://wordpress.org/support/forum/requests-and-feed-
back) — A forum dedicated to asking for feature requests and offering feedback.

 Polls — Public surveys and polls are sometimes published to enable users to vote on new
ideas or features.

 WordPress has a multimillion user base, so having an organized way to get feedback is crucial.
Individual plugins don ’ t generally have that many users, but a popular plugin can easily have
thousands of users. If you build plugins on your own, feedback can become overwhelming without
a dedicated system for keeping track of it.

 You can receive feedback on your plugins in many ways.

 Email — Set up a contact form on your Web site so that users can directly email you with
feedback.

 Blog comments — Allow users to post comments on your plugin announcement posts.

➤

➤

➤

➤

➤

➤

➤

➤

➤

Getting Your Plugin Renowned ❘ 495

 Ideas forum — If you run your own support forums, create an extra forum just for new
ideas and feedback.

 Polls — Periodically publish polls or surveys to gain user feedback. PollDaddy is a great ser-
vice for setting up polls and tracking results: http://polldaddy.com .

 Support — As described in the section “ Supporting Your Plugins, ” supporting your plugins
can be benefi cial. You should consider all support questions as feedback on how to improve
your plugins.

 Getting feedback is only part of the process. To improve your plugin and grow your user base, you
need to act upon that feedback. Not all feedback and feature requests from users will be great ideas.
You ’ re still the developer and need to make that decision. Even if you don ’ t use an idea presented by
a user, you should still treat the idea and the user seriously. If necessary, explain why you decided
not to go with a certain idea.

 The biggest benefi t of listening to and using feedback outside of improving your plugins is building a
community. Building relationships with your users can benefi t your work because your users are the
people who will be promoting your plugins.

 Getting Out of the Basement

 Developers are stereotyped as guys living and working from their parents ’ basement or garage.
Of course, you know not all code - savvy people are recluses. On the Web, shying away into the
basement won ’ t help getting your plugin renowned. Fortunately, the Web offers opportunities for
anyone to be a social butterfl y.

 To be great at marketing your plugins, yourself, and your company, you need to be socially active
in the WordPress community. This means getting involved in the development of WordPress,
introducing yourself to other developers, chatting in community forums, commenting on other
people ’ s blogs, and just being active in any way you can fi nd.

 One of the worst things you can do is leave comments on other blogs such as, “ Hey, check out my
new plugin!!! It ’ s the best plugin ever!!! ” That ’ s seen as the equivalent of spamming. Let your work
be known by allowing people to get to know you and keeping your comments relevant. Most blogs
have a comment form fi eld where you can leave a link back to your Web site. Many blog owners
will visit the sites of people who leave useful and relevant comments. This opens an opportunity for
someone new to recognize your work and possibly even promote it.

 Being socially active isn ’ t just about self - promotion. You should enjoy being involved in the
community. Find those sites and blogs that you feel comfortable being a part of. If you ’ re not
enjoying yourself, it won ’ t take long for you to give up on the process.

 Other Promotion Methods

 As you can probably see at this point, promoting your work is less about promoting specifi c plugins
and more about promoting yourself or your company. If you ’ re creating a company, you need to
focus on building that brand ’ s image within the WordPress community. If you ’ re a solo act, you are
the brand, so your focus should be on letting other people get to know you.

➤

➤

➤

496 ❘ CHAPTER 17 MARKETING YOUR PLUGIN

 Following is a list of additional routes you may take to promote your work.

 Write for other blogs about WordPress. If you ’ re not well known within the community,
ask WordPress - related sites if you can write some guest articles. Usually, these sites have an
About the Author section at the end of the post with a link back to your site.

 Get involved with others via social networking sites such as Twitter and Facebook. Because
you ’ re likely to be a member of a social networking site anyway, don ’ t let this opportunity
go to waste. Befriend others within the WordPress community on these sites.

 Post on WordPress - related forums and message boards. Get to know other members at these
places. A great message board for developers is WP Tavern: http://wptavern.com/forum .

 Spend some time offering your services for free to new WordPress users via the WordPress
support forums: http://wordpress.org/support . This can enable you to take on new
issues and gain some appreciation from users who are having trouble.

 Write patches and submit tickets for the core WordPress code at http://core.trac
.wordpress.org . You ’ ll become a better developer, and others will notice your work if
it ’ s good.

 Go to a WordCamp. WordCamps are one - or two - day local events held all over the world
where people simply talk about WordPress, eat great food, and listen to presentations. You
can fi nd WordCamps on the WordCamp Web site: http://wordcamp.org .

 Everything on that list is something simple you can do to make yourself both a better developer and
enable you to get more involved in the community. These are things you ’ ll likely do not just as a
marketing tactic but as something you enjoy doing.

 You don ’ t have to do everything on the list. However, the more ways you can get yourself involved,
the more opportunities you have for promoting your plugins.

 SUMMARY

 Although it would be nice if you could hire a marketing expert to help market your work, it ’ s
unnecessary. You don ’ t need to be an expert in the fi eld to promote your work. If you enjoy the
work you ’ re doing and think others might fi nd the work useful, it ’ s easy to promote it.

 The most important thing you should learn from this chapter is that you need to be socially active
within the WordPress community to promote your plugins. The WordPress community is a large
and diverse group of people, so you have a massive audience to promote your plugins to. Remember
that you shouldn ’ t be involved only to promote your plugins. You should be involved because you
enjoy being a part of the community. By doing this, your work can promote itself.

➤

➤

➤

➤

➤

➤

The Developer Toolbox

 WHAT ’ S IN THIS CHAPTER?

 Using the WordPress core as a reference

 Understanding inline documentation

 Exploring popular core fi les and functions

 Using community resources and Web sites

 Learning about external tool Web sites

 Creating a developer toolbox

 When developing plugins for WordPress, you must have a good list of resources to help guide
you in the right direction. This list of resources is the developer ’ s toolbox. In this chapter you
cover the most popular and helpful resources available for plugin development. You also review
tools that every developer should use to help optimize the process of plugin development.

 CORE AS REFERENCE

 The best reference when developing plugins for WordPress is the core WordPress code. What
better way to learn functions, and discover new functions, than to explore the code that
powers every plugin you develop. Understanding how to navigate through the core WordPress
code is a valuable resource when developing professional plugins. Also, contrary to online
resources and the Codex, the core is always up to date.

 Inline Documentation

 Many of the core WordPress fi les feature inline documentation. This documentation, in the
form of a code comment, gives specifi c details on how functions and code work. All inline

➤

➤

➤

➤

➤

➤

 18

498 ❘ CHAPTER 18 THE DEVELOPER TOOLBOX

documentation is formatted using the PHPDoc standard for PHP commenting. The following
comment sample is the standard PHPDoc template for documenting a WordPress function:

/**
 * Short Description
 *
 * Long Description
 *
 * @package WordPress
 * @since version
 *
 * @param type $varname Description
 * @return type Description

 */

 Inline documentation is an invaluable resource when exploring functions in WordPress. The comment
includes a short and long description, detailing the purpose of a specifi c function. It also features the
WordPress version in which it was added. This helps determine what new functions are added in each
release of WordPress.

 Parameters are also listed, along with the data type of the parameter and a description of what
the parameter should be. The return type and description are also listed. This helps you understand
what value a specifi c function will return. For example, when creating a new post in WordPress, the
newly created post ID would be returned if successful.

 Now look at real inline documentation for the delete_option() function.

/**
 * Removes option by name. Prevents removal of protected WordPress options.
 *
 * @package WordPress
 * @subpackage Option
 * @since 1.2.0
 *
 * @uses do_action() Calls ‘delete_option’ hook before option is deleted.
 * @uses do_action() Calls ‘deleted_option’ and ‘delete_option_$option’ hooks on
 success .
 *
 * @param string $option Name of option to remove. Expected to not be SQL-escaped.
 * @return bool True, if option is successfully deleted. False on failure.
 */

function delete_option($option) {

 The inline documentation features a clear description of the purpose of this function. You can
see the function is part of the WordPress package and was added in version 1.2.0. The comment
also lists any action hooks executed when calling this function, in this case the delete_option ,
 deleted_option , and delete_option_$option action hooks.

 The only parameter required for this function is $option , which is described as the option name.
Finally, the return value is boolean ; True if successful and False on failure.

 Inline documentation is an ongoing process. All new functions added to WordPress are documented using
this process. Helping to document existing functions is a great way to dive into core contributing to
WordPress.

 Finding Functions

 Now that you understand how to use inline documentation to learn functions in WordPress, you need
to know how to fi nd those functions. To start make sure you have downloaded the latest version of
WordPress to your local computer. You will be searching through these code fi les for functions.

 Every core fi le, excluding images, can be viewed in a text editor program. When choosing a text editor
to use, make sure it supports searching within fi les. You can fi nd an extensive list of text editors on the
Codex at http://codex.wordpress.org/Glossary#Text_editor .

 When searching through the core WordPress fi les for a specifi c function, you need to make sure
calls to that function are fi ltered out, or you may get hundreds of results. The easiest way to do this
is include the word “ function ” at the start of your search. For example, to fi nd wp_insert_post()
simply search for “ function wp_insert_post . ”

 Remember not everything in WordPress is a function. If you don ’ t get any
results, remove the word “ function ” from your search. Also remember to search
all fi les (*.*) and not just .txt fi les, which many text editors default to.

 Common Core Files

 Many of the functions you use in your plugins are located in specifi c core fi les. Exploring these fi les
is a great way to fi nd new and exciting functions to use in your plugins.

 The wp - includes folder features many of the fi les used for public side functions — that is,
functions used on the public side of your Web site.

 Formatting.php

 The formatting.php fi le contains all WordPress API formatting functions, such as the following:

 esc_*() — Includes all escaping functions in this fi le

 is_email() — Verifi es an email address is valid

 wp_strip_all_tags() — Strips all HTML tags, including script and style, from a string

 Functions.php

 The functions.php fi le contains the main WordPress API functions. Plugins, themes, and the
WordPress core use these functions, for example:

 *_option() — Adds, updates, deletes, and retrieves options

 current_time() — Retrieves the current time based on the time zone set in WordPress

➤

➤

➤

➤

➤

Core as Reference ❘ 499

500 ❘ CHAPTER 18 THE DEVELOPER TOOLBOX

 wp_nonce_*() — Creates nonce values for forms and URLs

 wp_upload_dir() — Retrieves array containing the current upload directory ’ s path and URL

 Pluggable.php

 The pluggable.php fi le contains core functions that you can redefi ne in a plugin. This fi le is full of
useful functions for your plugins, for example:

 get_userdata() — Retrieves all user data from the specifi ed user ID

 get_currentuserinfo() — Retrieves user data for the currently logged in user

 get_avatar() — Retrieves a user ’ s avatar

 wp_mail : — Is the main function for sending email in WordPress

 wp_redirect() — Redirects to another page

 wp_rand() — Generates a random number

 Plugin.php

 The plugin.php fi le contains the WordPress Plugin API functions, such as the following:

 add_action() — Executes this hook at a defi ned point in the execution of WordPress

 add_filter() — Uses this hook to fi lter prior to saving in the database or displaying
on the screen

 plugin_dir_*() — Functions to determine a plugin ’ s path and URL

 register_activation_hook() — Is called when a plugin is activated

 register_deactivation_hook() — Is called when a plugin is deactivated

 register_uninstall_hook() — Is called when a plugin is uninstalled and uninstall.php
does not exist in the plugin directory

 Post.php

 The post.php fi le contains the functions used for posts in WordPress, as follows:

 wp_*_post() — Functions for creating, updating, and deleting posts

 get_posts() — Returns a list of posts based on parameters specifi ed

 get_pages() — Returns a list of pages based on parameters specifi ed

 *_post_meta() — Functions to create, update, delete, and retrieve post meta data

 register_post_type() — Registers custom post types in WordPress

 get_post_types() — Retrieves a list of all registered post types

 This is just a list of the more popular functions and their locations. Many more functions are
available to use when developing your plugins. When a new version of WordPress is released, it ’ s

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

always fun to explore these fi les to see what functions have been added and are available for use in
your plugins.

 CODEX

 One of the most important online resources for plugin development is the WordPress Codex. The Codex
is an online wiki for WordPress documentation and is located at http://codex.wordpress.org .

 The Codex is packed full of information about the use of, and developing with, WordPress. It
includes an extensive function reference with some helpful tutorials and examples demonstrating the
more common functions in WordPress.

 Searching the Codex

 You can search the Codex in a few different
ways. The most common way is to use the
Codex search located at http://wordpress
.org/search/ or by entering your search
terms in the search box located in the header
of WordPress.org. The default search for the
Codex is documentation, but you can also
search the Support Forums, WP.org Blogs, and
the Bug Database, as shown in Figure 18 - 1.

 The Codex also features an extensive glossary. This can help you become familiar with terms used
in the Codex, as well as in WordPress. You can access the glossary at http://codex.wordpress
.org/Glossary

 The Codex home page also features an index of articles organized by topic. The articles are ordered
by level of diffi culty, with an article specifi c to the latest version of WordPress near the top. This
article details new features, functions, changes, and so on in the latest version of WordPress. It ’ s
always helpful to read this article to become familiarized with any changes to functions and
methods for developing plugins in WordPress.

 Function Reference

 As a plugin developer, the biggest benefi t of the Codex is the function reference section located at
 http://codex.wordpress.org/Function_Reference . This section lists all functions in the Codex
for the more popular WordPress API functions. This page is a must - bookmark for any WordPress
plugin developer.

 Each individual function reference page contains a description of the function, basic usage
example, parameters required for the function, and also the return values. Think of these function
reference pages as quick - and - easily - readable inline documentation on a function. Most function pages
also feature an example, or more, demonstrating practical uses of that particular function.

 FIGURE 18 - 1

Codex ❘ 501

502 ❘ CHAPTER 18 THE DEVELOPER TOOLBOX

 TOOL WEB SITES

 Many different Web sites are available to help in researching and understanding specifi c functionality in
WordPress. These sites can help as new versions of WordPress are released with new functionality that
can be used in your plugins.

 PHPXref

 PHPXref is a cross - referencing documentation generator. Quite simply it is a developer tool that
can scan a project directory and translate the fi les processed into readable cross - referenced HTML
fi les. It automatically processes PHPDoc commenting to produce documentation for the functions
included.

 An online hosted version of PHPXref is also available, which is more specifi cally for WordPress.
The online version is located at http://phpxref.ftwr.co.uk/wordpress/.

 Visiting the WordPress PHPXref site, you ’ ll be confronted with what looks like a Windows Explorer
layout, as shown in Figure 18 - 2.

 FIGURE 18 - 2

 The Codex is a great resource, but by no means is guaranteed to be accurate or
up to date. Remember the WordPress core is the only resource that is always
100% up to date.

 As you can see, the standard WordPress folder displays on the left with
the core subdirectories and root fi les listed. As an example, click into the
wp - includes directory and click the plugin.php fi le. Clicking this link brings
up a summary view of the current fi le selected, in this case plugin.php . This
summary view has useful information including a list of every function in the
fi le, as shown in Figure 18 - 3.

 Seeing a top - level glance of all functions in a WordPress core fi le is a great
way to fi nd new functions, and even locate existing functions for reference.
Clicking any listed function takes you to the section of the page detailing
the usage of the function. This information is extracted from the inline
documentation saved in the WordPress core fi le. If the function is not
documented in WordPress, this section will be empty. You can also easily
view the source of any fi le by clicking the Source View link near the header
of the page.

 It ’ s easy to see how useful the WordPress PHPXref site is for a developer.
This is another required tool to add to your resource arsenal.

 Hooks Database

 The WordPress hooks database, which was created and is supported by Adam Brown, is the
essential resource for discovering hooks in WordPress. Adam built a system that digs through all
WordPress core fi les and extracts every action and fi lter hook that exists in WordPress. He has been
indexing these values since WordPress 1.2.1 and updates the hooks database with each new major
version of WordPress.

 One of the best features of the hooks database is you can view all new hooks added in each version
of WordPress. As a plugin developer, hooks are one of the most powerful features that you can
use when creating plugins in WordPress. Clicking any hook name produces a hook detail screen
showing where the hook is defi ned in the WordPress core code.

 To visit the hooks database visit http://adambrown.info/p/wp_hooks .

 COMMUNITY RESOURCES

 There are also many different community resources available to help with WordPress development.
These resources can help you expand your knowledge on plugin development, troubleshoot plugin
issues, and work with new features in WordPress.

 Support Forums

 WordPress.org features a large support forum for topics ranging from using WordPress to plugin
development. You can visit the support forums at http://wordpress.org/support/ .

 FIGURE 18 - 3

Community Resources ❘ 503

504 ❘ CHAPTER 18 THE DEVELOPER TOOLBOX

 As a plugin developer, multiple forum sections can help expand your knowledge on plugin
development, and support any public plugins you have released. Following are the forum sections
specifi c to plugins:

 http://wordpress.org/support/forum/hacks — Discussing plugin development, coding,
and hacks.

 http://wordpress.org/support/forum/wp-advanced — Discussions are more advanced
and complex than usual.

 http://wordpress.org/support/forum/multisite — Anything and everything regarding
the Multisite feature.

 http://wordpress.org/support/forum/plugins-and-hacks — Plugin support questions.
If you released a plugin to the Plugin Directory, users can submit support issues specifi c to
your plugin.

 Mailing Lists

 The WordPress project has multiple mailing lists set up for discussions on various topics. These
mailing lists can be a quick - and - easy way to get some feedback and advice from other developers
in the community. The mailing list works as a two - way conversation. You would send a problem or
question to the list, and a member of the list responds with the answer. All emails sent to the list are
also archived for later reading.

 The mailing list geared toward plugin developers is the Hackers mailing list. This list is a place for
advanced discussions about extending WordPress.

 Email: wp - hackers@lists.automattic.com

 Join: http://lists.automattic.com/mailman/listinfo/wp-hackers

 Archive: http://lists.automattic.com/pipermail/wp-hackers/

 Another potentially useful mailing list is the Trac list. Trac is the open source bug tracking software
used to track development of the WordPress core. This can be useful to see what new features are
implemented in the latest version of WordPress. This is a high - traffi c email list.

 Email: wp - trac@lists.automattic.com

 Join: http://lists.automattic.com/mailman/listinfo/wp-trac

 Archive: http://lists.automattic.com/pipermail/wp-trac/

 WordPress Chat

 Often it ’ s nice to have a live conversation when seeking help for plugins or about WordPress development.
WordPress uses IRC for live chat and has a few active chat rooms. To join the WordPress chat, you need
an IRC client (http://codex.wordpress.org/IRC#IRC_Client_Applications) installed on your
computer. All WordPress chat channels are located on the Freenode server at irc.freenode.net .

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 #wordpress — The main room for WordPress. Room conversations can vary from basic
WordPress usage to advanced plugin development. Many of the core WordPress developers
and contributors are in this room and willing to help you.

 #wordpress - dev — This chat room is dedicated to the discussion of WordPress core
development. This room is not for general WordPress discussions, but rather specifi c to
core development or bugs and issues found within the core.

 These chat rooms are an awesome resource for real - time help when developing plugins in WordPress.
Many WordPress experts hang out in these rooms and enjoy helping others learn WordPress.

 For more information on WordPress chat, including how to download an IRC client and connect to
Freenode, visit http://codex.wordpress.org/IRC .

 WordPress Development Updates

 When developing plugins, and releasing to the public, you need to stay current on new features
and functionality coming in the new version of WordPress. This can help you verify not only if
your plugin is compatible with the latest version, but also what new features your plugins can take
advantage of. One of the best ways to track WordPress development is through the WordPress
Development Updates site located at http://wpdevel.wordpress.com/ .

 The development updates site uses the popular P2 theme, which is a Twitter - like theme for WordPress.
You can also fi nd out about the weekly developer chats that take place in the IRC channel #wordpress - dev.
These chats discuss the current status of the upcoming WordPress version, feature debates and
discussions, and much more.

 WordPress Ideas

 WordPress.org features an ideas section for creating and rating ideas for future versions of WordPress.
This is actually a great resource for gathering ideas for plugins. Many of the ideas submitted could
be created using a plugin. The more popular an idea is, the more popular the plugin would most
likely be.

 The WordPress Ideas area is located at http://wordpress.org/extend/ideas/ .

 Community News Sites

 There are some great Web sites that focus on WordPress developer related news and articles. Many
of these sites feature development - focused tutorials and tips that can be used when creating your
plugins. The following sections explore useful community news sites that are available.

 WordPress Planet

 WordPress Planet is a blog post aggregator located on WordPress.org. This includes posts from WordPress
core contributors and active community members. This news feed is also featured on the dashboard
of every WordPress - powered site by default.

 WordPress Planet is located at http://planet.wordpress.org/ .

➤

➤

Community Resources ❘ 505

506 ❘ CHAPTER 18 THE DEVELOPER TOOLBOX

 Planet WordPress

 Not to be confused with WordPress Planet, Planet WordPress is a news aggregator site run by our
own Ozh Richard. This Web site aggregates blog posts from plugin and core developers and provides
them in a single feed. This makes it easy to track WordPress news and topics in a single source.

 Planet WordPress is located at http://planetwordpress.planetozh.com/ .

 WPEngineer.com

 WPEngineer is a great resource for plugin developers. The site features in - depth tutorials, tips and
tricks, news, and more. Many of the articles dive into code examples demonstrating how to achieve a
specifi c result in WordPress. Plugin developers will enjoy the more technical nature of this Web site.

 You can visit the Web site at http://wpengineer.com/ .

 WeblogToolsCollection.com

 WebLog Tools Collection (WLTC) is a news site focusing on blogging topics, although it generally
leans toward WordPress - specifi c articles. WLTC features a weekly new Plugin and Theme release
post, which is a great way to gain instant exposure for your new plugin. WLTC has also hosted
the annual WordPress Plugin Competition, giving away cash and prizes to the winning plugins as
decided by a panel of expert judges (including Ozh!).

 You can visit WLTC at http://weblogtoolscollection.com/ .

 Twitter

 Twitter is also a great resource for following WordPress developers, contributors, and the entire
community. More specifi cally the Twitter account @wpdevel tracks every SVN commit made to
the WordPress core fi les. This is a quick and easy way to follow new developments with the latest
version of WordPress.

 Local Events

 Another great resource are local WordPress events. When learning to create plugins in WordPress, it
can help to fi nd other enthusiastic developers near you to learn from and work with.

 WordCamps are locally organized conferences covering anything and everything WordPress.
Many WordCamps feature plugin - development - specifi c presentations given by some of the top
plugin developers in the community. These presentations are a great way to learn new and advanced
techniques to use in your plugins. To fi nd a WordCamp near you, visit http://central
.wordcamp.org/ .

 WordPress Meetups are also a great way to meet local developers in your area. Meetups generally
happen more often, typically on a monthly basis, and are a local gathering of WordPress enthusiasts.
Meetups are also generally smaller, more focused groups allowing for more in - depth and personal
conversations to take place. To fi nd a local WordPress Meetup, visit http://wordpress
.meetup.com/

 TOOLS

 When developing plugins for WordPress, you want to use specifi c tools to make your life
much easier.

 Browser

 WordPress is web software; therefore, you will spend much of your time debugging plugins in
your browser. Some browsers stand above the rest when it comes to developer features. The two
more popular development browsers are Firefox and Google Chrome. Both of these browsers
feature development tools, and can be expanded with additional tools, to make debugging and
troubleshooting much easier.

 Firefox features probably the most popular development add - on: FireBug, which adds advanced
development tools to Firefox enabling you to easily edit, debug, and monitor HTML, CSS, and
even JavaScript. FireBug also supports add - ons enabling you to extend the features in FireBug. One
popular FireBug add - on is YSlow, which analyses your Web site to determine why you might have
slow load times. You can download FireBug for Firefox at http://getfi rebug.com/ .

 Google Chrome is also a great development browser. Chrome features a built - in set of Developer
Tools. These tools can enable you to edit and debug HTML, CSS, and JavaScript in real - time. You
can also install extensions in Chrome that add additional functionality to the browser. You can
download Google Chrome at http://www.google.com/chrome .

 Editor

 Creating plugins for WordPress is as simple as creating a PHP fi le. PHP fi les are actually text fi les with
a .php extension. Because of this you can develop PHP fi les using any basic text editor. Although text
editors can certainly get the job done, they won ’ t offer the more advanced features such as syntax
highlighting, function lookup, spell check, and so on.

 NetBeans IDE

 NetBeans IDE is a popular editor that is an open - source development environment that runs on
Java. Because of this, it can run on any platform that supports the Java Virtual Machine including
Windows, Mac OS, Linux, and Solaris. NetBeans supports PHP with syntax highlighting, PHP
debugging using Xdebug, remote and local project development, and many more features. For more
information and to download NetBeans, visit http://netbeans.org/ .

 Notepad++

 Notepad++ is a popular open - source text editor that runs on Windows, Mac OS, and Linux. The
editor is a lightweight text editor, similar to standard Notepad, but offers many features including
syntax highlighting, macros and plugins, auto - completion, regular expression fi nd and replace, and
more. To download Notepad++, visit http://notepad-plus-plus.org/ .

Tools ❘ 507

508 ❘ CHAPTER 18 THE DEVELOPER TOOLBOX

 TextMate

 TextMate is a GUI text editor for Mac OS X. It ’ s a popular editor among developers because it
features some programming - centric features. Some of these features include nested scopes, bundles
(snippet, macro, and command groupings), project management and more. You can download
TextMate at http://macromates.com/ .

 Coda

 Coda is another Mac editor with a focus on web development features. This is not only an editor,
but also features fi le transfer and SVN support. Coda ’ s goal is to be the only program you need when
doing web development. You can visit Coda ’ s offi cial site at http://www.panic.com/coda/ .

 Deploying Files with FTP, SFTP, and SSH

 When developing plugins you need to decide whether you plan to run a local instance of WordPress on
your computer or use an external web server. If using an external server, you need to use some method
to push your fi les to your server. The most popular method is using FTP.

 FTP, or File Transfer Protocol, is a standard network protocol used to copy fi les from your computer
to another computer, or a web server in this case. For FTP, FileZilla is a free, open - source FTP client
that works on Windows, Mac, and Linux. You can learn more about FileZilla and can download the
client at http://fi lezilla-project.org/ .

 SFTP, or Secure File Transfer Protocol, is also a popular method for deploying fi les to a server. The
major different between FTP and SFTP is that SFTP is encrypted. This means any account info,
usernames, passwords, and fi les you transfer are sent over an encrypted transport. Many popular
FTP clients, including FileZilla, also support SFTP.

 SSH, or Secure Shell, is a third option for transferring fi les to a web server. SSH is more than just a
way to transfer fi les. For example, you can interact with MySQL using SSH. A popular SSH client
is PuTTY, which runs on Windows and UNIX platforms and can be found at http://www.putty
.org/ . Mac users can use the built - in shell called Terminal when working with SSH.

 phpMyAdmin

 On occasion you may need to directly work with the WordPress database. The most common
method to do this is by using phpMyAdmin, which is a free tool, written in PHP, which provides
a simple web interface to view and manage a MySQL database. Most web hosts have this tool
installed by default.

 Using phpMyAdmin you can easily view what data your plugin adds to WordPress tables. This can
signifi cantly help speed up the debug process. You can also run phpMyAdmin on your computer by
downloading the software package at http://www.phpmyadmin.net/home_page/downloads.php .

 MySQL can also be administered through SSH; however, SSH is a command - line
interface and a bit more advanced than using the web interface of phpMyAdmin.

Summary ❘ 509

 SUMMARY

 As a plugin developer you need a solid set of tools in your developer toolbox. Every developer ’ s
toolbox is unique and customized to your tastes and server setup. Becoming comfortable with your
developer tools can help you be comfortable when creating professional plugins in WordPress. If
you don ’ t have a set of preferred tools, you should ask around and see what other developers use.
It ’ s always fun to talk with other programmers to see what tools they use and recommend.

 When developing, news and community Web sites are just as important as your tools. These sites
can help you expand your knowledge on plugin development, learn about new features and proper
usage of those features, and become a part of the greatest community on the web: The WordPress
Community. Code on!

511

INDEX

$ (dollar sign)
jQuery object, 336
shortcut to function, 336

A

abs() PHP function, 129
absint() function, 131, 442
Action hook, 2
action hooks, 29

admin_menu, 38
custom example, 53
did_action() function, 36
functions, 30

do_action_ref_
array(), 32–33

remove_action(),
33–34

remove_all_actions
(), 34

has_action(), 35
init, 37
parameters, multiple, 30
plugins_loaded, 36–37
pre_get_posts, 32–33
save_post, 82, 85
$tag, 30
template_redirect, 38
widgets_init, 64, 440
wp_dashboard_setup, 74
wp_head, 30, 39

actions, 31–32
activate functions, 18–20
activating plugins, 18–19
Active plugins, 9
add_action() function, 31, 82
add_blog_option()

function, 452
add_feed() function, 421
add_filter() function, 40
add_menu_page() function, 60
add_meta_box() function,

79–80
add_option() function, 164
add_options_page()

function, 62

add_permastruct() function,
415–416

add_post_meta() function,
314–315

add_rewrite_tag() function,
415–416

add_settings_error()
function, 176

add_settings_field()
function, 171–172

add_settings_section()
function, 171–172

add_shortcode() function, 273,
434, 437
callback function, 276–277

add_submenu_page() function,
61

add_user_meta() function, 183
add_user_to_blog() function,

453, 454
admin code, conditional, 13
Admin Lang plugin, 188–190
admin pages, scripts, 351–352
admin_menu action hook, 38
admin_url() function, 362
Ajax

best practices, 341
code example, 338–340
debugging, 372–343
fl ow of events, 358
introduction, 337
requests

client-side, 358–359
server-side, 359–360

scripts, nonces, 127
security

nonces, 370
permissions, 370

Akismet plugin, 4
album_artist taxonomy, 321–323
album_genre taxonomy, 321–323
all-in-one methods, $wpdb object,

151–152
All in One SEO Pack plugin, 4
alternative APIs

building, 268–269
polling from plugins, 264–268

[amazon asin=”12345”
]booktitle[/amazon]
shortcode, 275–276

antispambot() function, 297
Apache, rewriting URLs,

404–405
APIs (application programming

interfaces)
alternative

building, 268–269
polling from plugins,

264–268
Dashboard Widget, 2, 75
Database, 2
Google Geocoding, 287–288
Google Maps, 290–295
HTTP, 2
Options, 2, 163–168
Plugin, 2
remote

reading from, JSON and,
255–259

sending data, 259–261
results storage, 288–289
Rewrite, 2, 403
self-hosted, 269
Settings, 2, 169–180
Shortcode, 2, 271–272
Transients, 2, 180–183
Widgets, 2

apply_filters() function,
39–40, 53

apply_filters_ref_array()
function, 41, 53

arbitrary content, 262–263
arrays

$clean, 129
data, sanitization, 144
options

loading, 166
saving, 164–165

attachments, 300
Author URI, 14
authority, intention and, 120–121
autoload parameter, 167

segregated plugin options, 168
toggling, 168

512

B

backward compatibility, 463–464
bb code, 283–285
best practices

Ajax, 341
$clean array, 129
per-user settings, 190
security, 160–161

blog ID (Multisite), 428–429
blog pester plugin, 391–395
$blog_ID global variable, 429
blogs

get_blog_details()
function, 430

get_blog_post() function,
429

posts, 300
retrieving, 429–430

restore_current_blog(),
431

boj_add_excerpts_to_pages()
function, 37

boj_addfeed_add_feed()
function, 421

boj_add_related_posts_to_
content() function, 47

boj_add_role_to_comment_text
() function, 49

boj_admin_settings_page()
function, 38

boj_alert_box_display_
buttons() function, 112

boj_alert_box_load_script()
function, 111

boj_altapi_check() function,
265–266, 266

boj_arm_ajax() function, 364
boj_awe_register_widgets()

function, 69
boj_cache related_posts()

function, 476
boj_count_published_posts()

function, 105
boj_create_user() function, 205
boj_cron_comment_init()

function, 396
boj_cron_days_old() function, 397
boj_cron_delete comments()

function, 399
boj_cron_email_reminder()

function, 377
boj_cron_hook, 376
boj_cron_menu() function, 376
boj_cron_pester_check()

function, 391, 392
boj_cron_rev_admin_init()

function, 388
boj_cron_rev_delete()

function, 386, 387, 389

boj_cron_settings() function,
376, 377

boj_custom_home_page_posts()
function, 42

boj_dashboard_example_
display() function, 76

boj_dashboard_example_
widgets() function, 74

boj_debug_output() function, 119
boj_display_blog_name()

function, 108
boj_display_user_website()

function, 208
boj_email_reminder() function,

376
boj_ep_add_rules() function, 419
boj_error_plugin_author_box

() function, 469
boj_example_footer_message()

function, 31
boj_footer_message() function,

100
boj_footer_user_logged_in()

function, 198
boj_force_admin_color()

function, 206
BOJ_Forum Roles() function, 234
boj_front_page_meta_

description() function, 39
boj_get_favorite_food()

function, 104
boj_get_text_message()

function, 101
boj_gmap_generate_map()

function, 292
boj_gmap_geocode() function,

287–288, 289
boj_insert_user() function, 204
boj_install() function, 19
boj_js_add_script1() function,

343
boj_list_users_of_blog()

function, 201
boj_loghttp_log_request()

function, 251
boj_mbe_create() function, 80
boj_mbe_function() function, 80
boj_mbe_image_admin_scripts()

function, 87
boj_mbe_image_admin_styles()

function, 88
boj_mbe_image_create()

function, 84
boj_mbe_image_function()

function, 85
boj_mbe_save_meta() function, 82
boj_menuexample_create_menu

() function, 60
boj_multisite_add_user_to_

site() function, 454

boj_multisite_create_menu()
function, 447

boj_multisite_latest_network_
posts() function, 437

boj_multisite_switch_menu()
function, 431

boj_multisite_switch_page()
function, 433

boj_music_albums_shortcode()
function, 310

boj_myplugin_create_options
() function, 168

boj_myplugin_get_song_title
() function, 182

BOJ_My_Plugin_Loader class, 52
boj_myplugin_process_ajax()

function, 359
boj_myplugin_recreate_

options() function, 168
boj_myplugin_section_text()

function, 172, 175
boj_myplugin_setting_input()

function, 175
boj_myplugin_setup() function,

53
boj_myplugin_uninstaller()

function, 22
boj_myplugin_validate_

options() function, 173
boj_plugin_display_post_link

() function, 103
boj_posts_by_comments()

function, 54
boj_private_content_register_

shortcodes() function, 228
boj_products_display()

function, 416
boj_products_rewrite()

function, 415
boj_randomly_order_blog_

posts() function, 33
boj_return empty_array()

function, 46
boj_rrs_activate() function, 410
boj_rrs_add_query_var()

function, 409
boj_rrs_add_rules() function,

409
boj_sc8_24hours() function, 296
boj_show_alert_box() function,

112
boj_single_template()

function, 50–51
boj_singular_post_css()

function, 38
boj_stb_newpost() function, 260
boj_super_function() function,

23
boj_terms_of_service_link()

function, 101

backward compatibility – boj_terms_of_service_link() function

513

boj_ti_ask_twitter() function,
257, 258

boj_ti_get_infos() function,
258

boj_user_avatars() function, 200
boj_user_contactmethods()

function, 216
boj_user_favorite_post_form

() function, 218
boj_user_welcome_message()

function, 209
boj_utage_add_page() function,

124
boj_utages_find orphans()

function, 126
boj_utages_message() function,

125
boj_utags_do_action()

function, 126
boj_validate_date() function,

135
boj_view_cron_menu() function,

382
boj_widgetexample_register_

widgets() function, 64
book database, 300
[book] shortcode, 273
[books title=”xkcd”] shortcode,

274–275
braces, style, 25
branding plugins, 490–491
broken plugins, 7
browsers, 507
built-in user roles, 5
button-primary class, 92–93
button-secondary class, 92–93
buttons, 92–93

C

caching, 473–474
built-in method, 474
deleting cached data, 474–475
functions

parameters, 474
wp_cache_add(), 475
wp_cache_delete(), 475
wp_cache_get(), 475
wp_cache_replace(),

475
wp_cache_set(), 475

loading cached data, 474–475
plugins, 475–477

transients and, 181
saving cached data, 474–475

calendar, 300
callbacks, class method and uninstall

hook, 22
Category taxonomy, 318

check_admin_referer()
function, 123

checked() function, 70
class methods as callback for

uninstall hook, 22
class variables, $wpdb object,

159–160
classes, hooks, 51–52
$clean array, 129
client installs, obsolete, 466
client-side XML parsing, 371–372
Coda, 508
code, launching on document

ready, 337
Codex

function reference, 501
searches, 501

coding standards, 22
brace style, 25
documentation, 23
fi les, naming, 23–24
functions, naming, 23–24
indentation, 24
quotes, 24
space usage, 25–26
SQL statements, 26
variables, naming, 23–24

collected data, 191
comments

bb code, 283–285
deleting comments plugin,

395–401
deleting from frontend,

367–372
PHP commenting, 498

comment_text fi lter hook, 49
community news sites

Planet WordPress, 506
Twitter, 506
WeblogToolsCollection.com,

506
WordPress Planet, 505
WPEngineer.com, 506

consistency
buttons, 92–93
form fi elds, 93–94
headings, 90–91
icons, 91
links, 93
messages, 91–92
pagination, 95–96
tables, 94–95
WordPress UI, 90

Contact Form 7 plugin, 4
cookies, sanitization, 143
core code

documentation, inline,
497–499

functions, fi nding, 499
hooks, 56

core fi les
formatting.php, 499
functions.php, 499–500
pluggable.php, 500
plugin.php, 500
plugins and, 5
post.php, 500–501

core scripts
JavaScript, 345–346

replacing, 347
wp_enqueue_script(),

342–343
correcting debug messages, 468–472
cron

blog pester plugin, 391–395
delete comments plugin,

395–401
events

recurring, 376–378
single, 379–381
unscheduling, 381
viewing, 382–385

execution, 375–376
intervals, specifying, 382
post revisions, deleting weekly,

386–391
true cron, 386

CSRF (cross site request forgery), 2
CSS fi les, 348
CURL extension, 241
current_filter() function, 45
current_user_can() function, 118
Custom Fields, 313
custom hooks

action, example, 53
benefi ts, 53
fi lter, example, 54–55
functions, 52–53

D

Dashboard Widget API, 2, 75
dashboard widgets, 2

creating, 74–75
options, 75–79

data, defi ned sets, sanitization, 144–145
data arrays, sanitization, 144
data storage

record types, 191
tables, custom, 191–193

Database API, 2
databases

queries, sanitization, 147–148
URLs, sanitization, 141

dates, validation, 134
dbDelta() function, 192

SQL statement
format, 194
test run, 196

boj_ti_ask_twitter() function – dbDelta() function

514

deactivate functions, 18–20
deactivate_plugins() function,

19
deactivating plugins, 19–20

uninstalling, 20
debug information, displaying, 195
debug sandbox, 195
debugging, 466–467

Ajax, 372–343
enabling, 467
messages

correcting, 468–472
displaying, 467–469

WP_DEBUG_LOG, 472
debug.log fi le, 473
delete_blog_option() function,

452
delete_option() function,

167, 498
delete_post_meta() function, 317
delete_transient() function, 181
delete_user_meta() function, 183
deleting options, 167
deploying fi les, 508
deprecated functions, 465–466
development

checklist, 26–27
keeping current, 464–465
updates, 505

did_action() function, 36
directories, plugins, 3, 8–9

Akismet, 4
All in One SEO Pack, 4
Contact Form, 4
Google XML Sitemaps, 4
NextGEN Gallery, 4
wp-content/mu-plugins, 8
wp-content/plugins, 8

do_action() function, 30, 53
do_action_ref_array()

function, 32–33, 53
document ready, launching code, 337
documentation, 23

inline, 497–499
delete_option()
function, 498

PHPDoc, 23
do_shortcode() function,

282–283, 283
double quotes, 24
Drop-in plubins, 9
dual licensing, 480
dynamic scripts, 354–358

E

echoing strings, 99–108
editing plugins, 8
editors, 507

Coda, 508
NetBeans IDE, 507
Notepad++, 507
TextMate, 508

email, 5–6
address obfuscation, 296–297
strings

sanitization, 136–137
validation, 136–137

endpoints (URLs), 417–421
enqueuing scripts, 347–348
environment variables, sanitization,

142–143
error logging

enabling, 472–473
fi le location, 473
log fi le, 473
WP_DEBUG_LOG, 472

errors
debug information display, 195
fatal, plugins, 7
validation, feedback, 176–177
$wpdb object, 159

esc_attr() function, 66
esc_attr_e(), 101
esc_attr_x() function, 103–104
esc_html__() function, 101–102
esc_html_e() function, 102
esc_html_x() function, 104
esc_sql() function, 148
event calendar, 300
events, onload, 337
events (cron)

recurring, 376
single, 379–381
unscheduling, 381
viewing, 382–385

_ex() function, 102–103
existence of table, 193
expiring options

deleting, 181
retrieving, 181
saving, 181

extract() function, 292

F

famous quotes, 300
fatal errors, plugins, 7
feedback, validation errors, 176–177
feeds

formats, 421
registering, 421–422

fetch_feed() function, 269–270
fi elds, plugin management page,

177–180
fi les

core fi les
formatting.php, 499

functions.php, 499–500
pluggable.php, 500
plugin.php, 500
plugins and, 5
post.php, 500–501

deploying, 508
naming, 23–24
plugins, organization, 13
translation

MO, 113
PO, 113
storage, 115
tools, 113–114

fi lter hooks, 2, 29, 40
apply_filters_ref_array

function, 41
comment_text, 49
current_filter() function,

45
example, 54–55
has_filter() function,

44–45
posts_results, 42
remove_all_filters()

function, 44
remove_filter() function, 43
template_include, 49–50
the_content, 47–48
the_title, 48–49

fi lters, apply_filters() function,
39–40

FireBug, 507
flush_rewrite_rules()

function, 410
folders

plugins, 12
structure, 13–14

footers, scripts, 348–349
fopen() function, 241
fopen() streams, 240
force_balance_tags() function,

137–138
form fi elds, 93–94
form nonces, 123
formatting.php fi le, 499
forms, rendering, Settings API,

173–174
forums, 503–504
free software, 482
fsockopen() function, 241
FTP (File Transfer Protocol)

deploying fi les, 508
plugins, 8

function reference (Codex), 501
function_exists() function, 464
functions

__(), 100
absint(), 131, 442
action hooks, 30
activate, 18–20

deactivate functions – functions

515

add_action(), 31, 82
add_blog_option(), 452
add_feed(), 421
add_filter(), 40
add_menu_page(), 60
add_meta_box(), 79–80
add_option(), 164
add_options_page(), 62
add_permastruct(), 415–416
add_post_meta(), 314–315
add_rewrite_rule(), 409
add_rewrite_tag(), 415–416
add_settings_error(), 176
add_settings_field(),

171–172
add_settings_section(),

171–172
add_shortcode(), 273,

276–277, 434, 437
add_submenu_page(), 61
add_user_meta(), 183
add_user_to_blog(),

453, 454
admin_url(), 362
antispambot(), 297
apply_filters(), 39–40
apply_filters_ref_array
(), 41

boj_add_excerpts_to_
pages(), 37

boj_addfeed_add_feed(),
421

boj_add_related_posts_to_
content(), 47

boj_add_role_to_comment_
text(), 49

boj_admin_settings_page
(), 38

boj_alert_box_display_
buttons(), 112

boj_alert_box_load_
script(), 111

boj_altapi_check(),
265–266, 266

boj_arm_ajax(), 364
boj_awe_register_widgets
(), 69

boj_cache related_posts
(), 476

boj_count_published_
posts(), 105

boj_create_user(), 205
boj_cron_comment_init
(), 396

boj_cron_days_old(), 397
boj_cron_delete comments
(), 399

boj_cron_email_reminder
(), 377

boj_cron_menu(), 376

boj_cron_pester_check(),
391, 392

boj_cron_rev_admin_init
(), 388

boj_cron_rev_delete(),
386, 387, 389

boj_cron_settings(),
376, 377

boj_custom_home_page_
posts(), 42

boj_dashboard_example_
display(), 76

boj_dashboard_example_
widgets(), 74

boj_debug_output(), 119
boj_display_blog_name
(), 108

boj_display_user_website
(), 208

boj_email_reminder(), 376
boj_ep_add_rules(), 419
boj_error_plugin_author_
box(), 469

boj_example_footer_
message(), 31

boj_footer_message(),
100

boj_footer_user_logged_
in(), 198

boj_force_admin_color
(), 206

BOJ_Forum Roles(), 234
boj_front_page_meta_
description(), 39

boj_get_favorite_food
(), 104

boj_get_text_message(),
101

boj_gmap_generate_map
(), 292

boj_gmap_geocode(),
287–288, 289

boj_insert_user(), 204
boj_install(), 19
boj_js_add_script1(), 343
boj_list_users_of_blog
(), 201

boj_loghttp_log_request
(), 251

boj_mbe_create(), 80
boj_mbe_function(), 80
boj_mbe_image_admin_
scripts(), 87

boj_mbe_image_admin_
styles(), 88

boj_mbe_image_create(),
84

boj_mbe_image_function
(), 85

boj_mbe_save_meta(), 82

boj_menuexample_create_
menu(), 60

boj_multisite_add_user_
to_site(), 454

boj_multisite_create_
menu(), 447

boj_multisite_latest_
network_posts(), 437

boj_multisite_switch_
menu(), 431

boj_multisite_switch_
page(), 433

boj_music_albums_
shortcode(), 310

boj_myplugin_create_
options(), 168

boj_myplugin_get_song_
title(), 182

boj_myplugin_process_
ajax(), 359

boj_myplugin_recreate_
options(), 168

boj_myplugin_section_
text(), 172, 175

boj_myplugin_setting_
input(), 175

boj_myplugin_setup(), 53
boj_myplugin_uninstaller
(), 22

boj_myplugin_validate_
options(), 173

boj_plugin_display_post_
link(), 103

boj_posts_by_comments
(), 54

boj_private_content_
register_shortcodes
(), 228

boj_products_display(),
416

boj_products_rewrite(),
415

boj_randomly_order_blog_
posts(), 33

boj_return empty_array
(), 46

boj_rrs_activate(), 410
boj_rrs_add_query_var(),

409
boj_rrs_add_rules(), 409
boj_sc8_24hours(), 296
boj_show_alert_box(), 112
boj_single_template(),

50–51
boj_singular_post_css
(), 38

boj_stb_newpost(), 260
boj_super_function(), 23
boj_terms_of_service_
link(), 101

functions – functions

516

functions (continued)
boj_ti_ask_twitter(),

257, 258
boj_ti_get_infos(), 258
boj_user_avatars(), 200
boj_user_contactmethods
(), 216

boj_user_favorite_post_
form(), 218

boj_user_welcome_message
(), 209

boj_utage_add_page(),
124

boj_utages_find orphans
(), 126

boj_utages_message(),
125

boj_utags_do_action(),
126

boj_validate_date(), 135
boj_view_cron_menu(),

382
boj_widgetexample_
register_widgets(), 64

check_admin_referer(),
123

checked(), 70
current_filter(), 45
current_user_can(), 118
custom hooks, 52–53
dbDelta(), 192
deactivate, 18–20, 19–20
deactivate_plugins(), 19
delete_blog_option(), 452
delete_option(), 167, 498
delete_post_meta(), 317
delete_transient(), 181
delete_user_meta(), 183
deprecated, 465–466
did_action(), 36
do_action(), 30
do_shortcode(), 282–283,

283
_e() function, 100
esc attr () function,

100–101
esc_attr(), 66
esc_attr_e(), 101
esc_attr_x(), 103–104
esc_html__(), 101–102
esc_html_e(), 102
esc_html_x(), 104
esc_sql(), 148
_ex(), 102–103
extract(), 292
fetch_feed(), 269–270
fi nding, 499
flush_rewrite_rules(),

410

fopen(), 241
force_balance_tags(),

137–138
fsockopen(), 241
get_blog_details(), 430
get_bloginfo(), 19
get_blog_option(), 452
get_blog_post(), 429
get_currentuserinfo(),

119–120
get_option(), 165–166
get_post_meta(), 80–81,

315–316
get_query_var(), 411–412
get_results(), 155–156
get_sitestats(), 459
get_super_admin(), 458
get_taxonomy(), 324
get_transient(), 181
get_user_count(), 459
get_user_meta(), 183
grant_super_admin(), 457
has_action(), 35
has_filter(), 44–45
home_url(), 17
initialize_map(), 290
inline documentation, 498
is_blog_user(), 453
is_email(), 136
is_multisite(), 429
is_tax(), 328–329
is_taxonomy_hierarchical
(), 327–328

json_decode(), 256
json_encode(), 256
like_escape(), 148
load_plugin_textdomain
(), 99

Multisite, 429–430
_n(), 104–105
naming, 23–24
_n_noop(), 106–107
_nx(), 105–106
_nx_noop(), 107–108
parse_request(), 406–407
PHP

abs(), 129
actions, 31–32
deprecated, 465–466
function_exists(),

464
get_users(), 464
intval(), 129, 131
is_array(), 442
is_int(), 131
strtotime(), 135

pluggable, 3
plugins_api(), 267
plugins_url(), 17

register_activation_hook,
36

register_activation_hook
(), 18

register_deactivation_
hook, 36

register_deactivation_
hook(), 19–20

register_post_type(),
301–304

register_setting(), 171
register_taxonomy(),

319–320
register_widget(), 64
remove_action(), 33–34, 34
remove_all_actions(), 34
remove_all_filters(), 44
remove_filter(), 43
remove_user_from_blog(),

455–456
restore_current_blog(),

431, 444
__return_empty_array(),

46–47
revoke_super_admin(), 457
sanitize_email(), 136–137
sanitize_key(), 133
sanitize_sql_orderby(),

148
selected(), 70
settings_fields(), 173–174
set_transient(), 181
shortcode_atts(), 282, 292
site_url(), 17
switch_to_blog(),

431–433, 444
taxonomy_exists(), 327
the_content(), 312
the_except(), 312
the_permalink(), 312
the_terms(), 325
the_title(), 311
update_blog_option(), 452
update_option(), 164–165
update_post_meta(), 82, 86
update_post_metadata(),

316–317
update_user_meta(), 183
WP: :parse_request(), 406
wp_add_dashboard_widget
(), 74, 76

wpautop(), 43
wp_cache_add(), 475
wp_cache_delete(), 475
wp_cache_get(), 475
wp_cache_replace(), 475
wp_cache_set(), 475
wp_default_scripts(), 346
wp_dequeue_script(), 346

functions – functions

517

wp_enqueue_script(), 87,
110–111, 343, 344–345

wp_enqueue_styles(), 87
wp_get_schedules(), 383
wp_localize_script(), 110
wpmu_create_blog(),

446–452
wp_next_scheduled(), 376,

381
wp_redirect(), 142
wp_register_script(),

347–348
wp_remote_get(), 242
wp_remote_head(), 242
wp_remote_post(), 242
wp_schedule_event(), 376
wp_schedule_single_event
(), 379

wp_unschedule_event(),
381

_x(), 102
functions.php fi le, 499–500

G

[gallery] shortcode, 272
generic queries, 156–157
GET sessions, 238
get_blog_details() function,

430
get_bloginfo() function, 19
get_blog_option() function, 452
get_blog_post() function, 429
get_currentuserinfo()

function, 119–120
get_option() function, 165–166
get_post_meta() function,

80–81, 315–316
get_query_var() function,

411–412
get_results() function, 155–156
get_row() method, 153–154
get_sitestats() function, 459
get_super_admin() function, 458
get_taxonomy() function, 324
get_transient() function, 181
get_user_count() function, 459
get_user_meta() function, 183
get_users() function, 464
get_var() method, 153
global variables, $blog_ID, 429
GlotPress translation tool, 114
GNU General Public License (GPL),

15
GNU Gettext translation tool, 114
good practices. See best practices
Google, tag, 4
Google Chrome, 507

Google Geocoding API, 287–288
Google Maps, 286–287

Google Geocoding API, 287–288
Google Maps API

access, 290–295
plugins, implementing, 292–295

Google XML Sitemaps plugin, 4
GPL (General Public License), 15, 480
grant_super_admin() function, 457

H

has_action() function, 35
has_filter() function, 44–45
headers

creating, 14
scripts, 348

headings, consistency, 90–91
home_url() function, 17
hooks

action, 2, 29
admin_menu, 38
did_action() function,

36
do_action_ref_array()

function, 32–33
has_action(), 35
init, 37
parameters, 30
plugins_loaded, 36–37
pre_get_posts, 32–33
remove_action(), 33–34
save_post, 82, 85
$tag, 30
template_redirect, 38
wp_dashboard_setup, 74
wp_head, 30, 39

actions, remove_all_
actions() function, 34

classes, 51–52
custom

action example, 53
benefi ts, 53
fi lter example, 54–55
functions, 52–53

fi lter, 2, 29, 40
apply_filters_ref_
array function, 41

comment_text, 49
current_filter()

function, 45
has_filter() function,

44–45
posts_results, 42
remove_all_filters()

function, 44
remove_filter()

function, 43

template_include, 49–50
the_content, 47–48
the_title, 48–49

introduction, 29
locating, core code searches, 56
reference lists, 56–57
variable, 56

hooks database, 503
HTML (HyperText Markup

Language)
fragments, sanitization,

137–138
nodes, sanitization, 139–140
tags, stripping, 138

HTTP API, 2
alternative APIs

building, 268–269
polling from plugins,

264–268
parameters, default, 250
proxy support, 248–249
remote APIs

reading from, JSON and,
255–259

sending data, 259–261
remote feeds, 259–261
request fi ltering, 249–254
responses

checking, 254–255
fi ltering, 249–254

wp_remote_ functions, 242
companion functions,

247–248
input parameters, 243–244
return values, 244–247

HTTP (Hyper Text Transfer
Protocol), 237
status codes, 239

classes, 239
HTTP requests, 237–238

client/server, 238
PHP

CURL extension, 241
fopen() function, 241
fopen() streams, 240
fsockopen() function,

241
HTTP extension, 240

request/response protocol, 238
HTTP transactions, 238–239

I

icons, 91
identifi er strings, internal, 133
images

[gallery] shortcode, 272
slideshows, 300

functions.php fi le – images

518

i18n, 98
Inactive plugins, 9
indentation, 24
init action hook, 37
initialize_map() function, 290
inline documentation, 497–499

delete_option()
function, 498

inline scripts, 349–350
input

parameters, wp_remote_
functions, 243–244

user, Settings API, 172–173
validation, versus sanitization,

130–131
installation

obsolete, 466
plugins, 7–8

integers
sanitization, 131–132
validation, 131–132

internal identifi er strings, 133
internationalization, 97–98

benefi ts, 98
JavaScript, 110–113
site languages, 98–99
translation, preparation, 99

intval() PHP function, 129, 131
is_array() PHP function, 442
is_blog_user() function, 453
is_email() function, 136
is_int() PHP function, 131
is_multisite() function, 429
isset() PHP function, 77, 82
is_tax() function, 328–329
is_taxonomy_hierarchical()

function, 327–328

J

JavaScript
headers and, 87
internationalizing, 110–113
jQuery, 333
sanitization, 142
scripts

core, 345–346
replacing, 347

enqueuing, 347–348
including, 341–348
registering, 347–348

wp_default_scripts(), 346
wp_dequeue_script(), 346
wp_enqueue_script(),

341–342
core scripts, 342–343
custom scripts, 343–344
scripts in footer, 344–345

jQuery, 333
benefi ts, 334
chaining, 334–335
no-confl ict mode, 336
syntax, 334–335

jQuery object, 334
JSON (JavaScript Object Notation)

API URL, 256
Google Geocoding API, 287
json_decode() function, 256
json_encode() function, 256
reading from remote API,

255–259
Twitter Info plugin, 257–258

K

KBabel translation tool, 114
KSES script, 138

L

labels, post types, 305
languages

Admin Lang plugin, 188–190
internationalization, 97–98

launching code on document ready,
337

Launchpad translation tool, 114
legal advice for licensing, 481
libraries, co-existence, 336
licenses, 15

benefi ts, 481
dual, 480
free software, 482
legal advice, 481
selecting, 480–482
split, 480

like_escape() function, 148
limiting protocols, 141
Link Category taxonomy, 318
links, wrap class, 93
loading

arrays of options, 166
plugins, 3

load_plugin_textdomain()
function, 99

local events, 506
local paths, 16
localization, 97–98
logging, error logging

enabling, 472–473
fi le location, 473
log fi le, 473

loops, custom post types,
309–311

M

mailing lists, 504
markers in maps, 291
member-only content display, 295–296
menus, 59–60

adding items, 62–63
submenus, 61–62
top-level, 60–61

messages, 91–92
debug, 467–469

correcting, 468–472
meta boxes

advanced, 84–89
custom, 79–80
saving data, 80–84

metadata
deleting, 184, 185–186
getting, 185
per-user settings, 183
posts, 299, 313–314

adding, 314–315
deleting, 317
retrieving, 315–316
updating, 316–317

updating, 184–185
methods

get_row(), 153–154
get_var(), 153
prepare(), 157–159
query(), 156–157
$wpdb object

all-in-one, 151–152
SELECT column, 155
SELECT generic results,

155–156
SELECT row, 153–154
superiority, 150
$wpdb->insert(), 152
$wpdb->update()

method, 151–152
mixed text strings, validation,

132–133
MO fi les, 113
mod_rewrite module, 404–405
Multisite, 425

advantages, 427
Archived sites, 426
blog ID, 428–429
database schema, tables,

460–461
Deleted sites, 426
enabling, 427–428
function

add_blog_option(),
452

delete_blog_option
(), 452

functions, 429–430

i18n – Multisite

519

get_blog_option(),
452

get_sitestats(), 459
get_user_count(), 459
restore_current_blog
(), 432

switch_to_blog(),
431–433

update_blog_option
(), 452

wpmu_create_blog(),
446–452

Mature sites, 426
network content shortcode,

434–440
network content widget,

440–446
network stats, 459–460
network users, 453–457

add_user_to_blog()
function, 453, 454

boj_multisite_add_
user_to_site(), 454

is_blog_user(), 453
remove_user_from_blog
() function, 455–456

Public sites, 426
restoring sites, 431–434
site creation, 446–452
site options, 452
site owner, 458–459
Spam sites, 426
Super admin, 457–458

get_super_admin()
function, 458

grant_super_admin()
function, 457

listing, 458
revoke_super_admin()

function, 457
switching sites, 431–434

music collections, 300
music_album post type, 304–305
Must-Use plugins, 9
mysql_fetch_array() PHP

function, 149
mysql_query() PHP function, 149

N

_n() function, 104–105
naming plugins, 11–12
nav menu item, 300
Nav Menu taxonomy, 318
nested shortcodes, 286
NetBeans IDE, 507
network users (Multisite), 453–457
NextGEN Gallery plugin, 4

_n_noop() function, 106–107
no-confl ict mode, 336
noConflict() wrapper, 337
nodes, HTML, sanitization,

139–140
nonces

Ajax scripts, 127, 370
creating, 122
description, 121
form, 123
verifi cation, 123–124

Notepad++, 507
_nx() function, 105–106
_nx_noop() function, 107–108

O

Object Cache, 474
objects

jQuery, 334
$rewrite, 407
$wp_query, 406, 407–408
$wp_rewrite, 406, 407

obsolete client installs, 466
online store, 300
onload event, 337
options

deleting, 167
expiring

deleting, 181
retrieving, 181
saving, 181

loading arrays, 166
plugins, 2
retrieving, 165–166
saving, 164

arrays, 164–165
segregating, 168
temporary, 2

Options API, 2, 163–164
deleting options, 167
loading arrays, 166
retrieving options, 165–166
saving options, 164

arrays, 164–165
ORDER BY clause, sanitization, 148

P

pages, 300
scripts, 349

pagination, 95–96
parameters

action hooks, 30
autoload, 167

toggling, 168
default, modifying, 250

inline documentation, 498
POST requests, 259–260
wp_remote_ functions,

243–244
parse_request() function,

406–407
paths, 15–16

local, 16
URL, 17–18

pattern matching, regular
expressions, 133

per-user settings
best practices, 190
profi le page input fi elds,

186–187
saving, plugin creation, 183
user IDs, 186
user metadata, 183

deleting, 185–186
getting, 185
saving, 184
updating, 184–185

permalinks, custom, 415–416
permissions

Ajax, 370
users, 118–120

photo portfolio, 300
PHP

commenting, 498
functions

abs(), 129
actions, 31–32
deprecated, 465–466
function_exists(),

464
get_users() function,

464
intval(), 129, 131
is_array(), 442
is_int(), 131
isset(), 77, 82
mysql_fetch_array(),

149
mysql_query(), 149
strip_tags(), 66, 71
strtotime(), 135

HTTP requests
CURL extension, 241
fopen() function,

241
fopen() streams, 240
fsockopen() function,

241
HTTP extension, 240

shorthand, 26
PHPDoc, 23

template, 498
phpMyAdmin, 508
PHPXref, 502–503

music collections – PHPXref

520

placeholders
multiple, 109
printf() PHP function, 108
sprintf() PHP function, 108
strings and, 108

Planet WordPress, 506
pluggable functions, 3
pluggable.php fi le, 500
plugin, unused tags, 124–127
Plugin API, 2
plugin fi les, naming plugins, 11–12
plugin management page, 174–176

adding fi elds, 177–180
user interface, 180

Plugin URI, 14
plugin.php fi le, 500
plugins

activating, 18–19
default settings, 18–19

Active, 9
Admin Lang, 188–190
administration page, 170
advantages, 5–7
blog pester, 391–395
branding, 490–491
broken, 7
caching and, 475–477
comments, bb code, 283–285
community, 7
core fi les and, 5
creating, per-user settings,

183
delete comments, 395–401
description, 1
development checklist, 26–27
directory, 3

Akismet, 4
All in One SEO Pack, 4
Contact Form 7, 4
Google XML Sitemaps, 4
NextGEN Gallery, 4
wp-content/mu-plugins,

8
wp-content/plugins, 8

Drop-ins, 9
editing, 8
fatal errors, 7
fi les, organization, 13
folders, 12

structure, 13–14
Google Maps API, 292–295
headers, creating, 14
Inactive, 9
installation, 7–8
licenses, 15

benefi ts, 481
dual, 480
free software, 482
legal advice, 481

selecting, 480–482
split, 480

loading, 3
managing, 8
menus, 59–60

adding items, 62–63
submenus, 61–62
top-level, 60–61

Must-Use, 9
naming, 11–12
options, 2
paths, 15–16

local, 16
URL, 17–18

restrictions, 481
reusing, 7
Rewrite API, 408
rewriting URLs, 410–411
sanity practices, prefi xes, 12–13
sharing, 7
submitting to WordPress.org,

482–484
announcing, 493
branding, 490–491
feedback, 494–495
naming, 489–491
submission, 484–485
supporting, 493–494
web site, 491–493

tags
Google, 4
Twitter, 4
widget, 4

taxonomy, post types, 329–332
testing functionality, 10
themes and, 6
translation, 99
updates, 6
upgrades, 263–264
WordPress and, 2–3

version compatibility, 18
plugins_api() function, 267
plugins_loaded action hook, 36–37
plugins_url() function, 17
PO fi les, 113
Poedit translation tool, 114
Pootle translation tool, 114
POST requests

formatting parameters, 259–260
sending to remote API, 259–261
Simple Tumblr Backup plugin,

260–261
post revisions, deleting weekly,

386–391
Post Tag taxonomy, 318
post types, 299

custom
loops, 309–311
retreiving content, 311–312

custom capabilities, 306–308
existence checking, 312–313
labels, 305–306
The Loop, 309–311
possibilities, 300
registering, 300–305
taxonomies, 308–309

assigning, 323–324
taxonomy plugin, 329–332
using, 309–313

post.php fi le, 500–501
posts

attachments, 300
blog posts, 300
book database, 300
event calendar, 300
famous quotes, 300
image slideshows, 300
metadata, 299, 313–314

adding, 314–315
deleting, 317
retrieving, 315–316
updating, 316–317

music collection, 300
nav menu item, 300
online store, 300
pages, 300
photo portfolio, 300
product testimonials, 300
revisions, 300
taxonomies and, 325–327
videos, 300

posts_results fi lter hook, 42
POT fi les, creating, 114–115
prefi xes, 12–13
pre_get_posts, 32–33
prepare() method, 157–159
printf() PHP function,

placeholders and, 108
product testimonials, 300
profi le pages, input fi elds, 186–187
promoting plugin on WordPress.org

announcing plugin, 493
naming plugin, 489–491
web site, 491–493

protocols, limiting, 141
proxy servers, HTTP API, 248–249
public pages, 353–354

Q

queries
databases, sanitization,

147–148
generic, 156–157
process overview, 406–407
SQL injections, protection

against, 157–159

placeholders – queries

521

tracking, $wpdb object, 159
variables, registering, 409

query() method, 156–157
quotes, 24, 300

R

Read More links, 360–367
record types, 191
recursive shortcodes, 283
redirects, URLs, sanitization,

141–142
reference lists for hooks, 56–57
register_activation_hook()

function, 18, 36
register_deactivation_hook()

function, 19–20, 36
registering

feeds, 421–422
query variables, 409

registering post types, 300
music_album, 304–305
register_post_type() function

register_meta_box_cb
argument, 303

register_post_type()
function
can_export argument,

303
capabilities argument,

302
capability_type

argument, 302
exclude_from_search

argument, 301
has_archive argument,

302
hierarchical argument,

302
labels argument, 302
menu_icon argument, 303
menu_position argument,

303
permalink_epmask

argument, 304
public argument, 301
publicy_queryable

argument, 301
query_var argument, 302
rewrite argument, 303
show_in_nav_menus

argument, 303
show_ul argument, 301
supports argument,

301–302
taxonomies argument,

303
registering scripts, 347–348

registering shortcodes, 273–277
registering taxonomies, 319–323
registering widgets, 69
register_post_type() function

can_export argument, 303
capabilities argument, 302
capability_type argument,

302
exclude_from_search

argument, 301
has_archive argument, 302
hierarchical argument, 302
labels argument, 302
public argument, 301
publicy_queryable

argument, 301
query_var argument, 302
register_meta_box_cb

argument, 303
rewrite argument, 303
show_in_nav_menus

argument, 303
show_ul argument, 301
supports argument, 301–302
taxonomies argument, 303

register_setting() function, 171
register_taxonomy() function,

319–320
register_widget() function, 64
regular expressions

arbitrary content and, 263
pattern matching, 133

remote feeds, 269–270
remove_action() function,

33–34, 34
remove_all shortcodes()

function, 281
remove_all_actions() function,

34
remove_all_filters() function,

44
remove_filter() function, 43
remove_shortcode() function,

281
remove_user_from_blog()

function, 455–456
rendering forms, Settings API,

173–174
repositories, 263

TortoiseSVN, 485
Versions, 485
WordPress.org, 483–484

SVN setup, 485–486
resources

community news sites
Planet WordPress, 506
Twitter, 506
WeblogToolsCollection

.com, 506

WordPress Planet, 505
WPEngineer.com, 506

development updates, 505
local events, 506
mailing lists, 504
support forums, 503–504
WordPress chat, 504–505
WordPress ideas, 505

restore_current_blog()
function, 431, 444

restrictions on plugins, 481
results storage, APIs, 288–289
retrieving options, 165–166
retrieving taxonomies, 324
return values, wp_remote_

functions, 244–247
__return_empty_array()

function, 46–47
$return_posts variable, 435
reusing plugins, 7
revisions, 300
revoke_super_admin() function,

457
Rewrite API, 2, 403

plugins, 408
$rewrite object, 407
rewrite rules, custom, 2
rewrite tags, 415–416
rewriting URLs, 403

add_rewrite_rule()
function, 409

Apache web server, 404–405
fl ushing rules, 409–410
plugin, 410–411
shop list, 408–414
WordPress, 405

roles, built-in user roles, 5

S

sandboxes, 195
sanitization

arrays, data, 144
cookies, 143
data, defi ned sets, 144–145
database queries, 147–148
email strings, 136–137
HTML fragments, 137–138
HTML nodes, 139–140
integers, 131–132
internal identifi ers, 133
JavaScript, 142
need for, 127–128
ORDER BY clause, 148
string patterns, 134–136
URLs, 140–141

database, 141
redirects, 141–142

query() method – sanitization

522

sanitization (continued)
versus validation, 130–131
variables

environment, 142–143
server, 142–143

sanitize_email() function,
136–137

sanitize_key() function, 133
sanitize_sql_orderby()

function, 148
sanitizing user-entered data, 66
sanity practices, prefi xes, 12–13
save_post action hook, 82, 85
saving, options, 164
scripts

admin pages, 351–352
Ajax, nonces, 127
dynamic, 354–358
footer, 348–349
head, 348
inline, 349–350
JavaScript

core, 345–346
enqueuing, 347–348
registering, 347–348
wp_default_scripts
(), 346

wp_dequeue_script(),
346

wp_enqueue_script(),
341–348

KSES, 138
location, 350–351
page content, 349
public pages, 353–354

search engines, URLs, 404
searches, Codex, 501
security, 117–118

Ajax
nonces, 370
permissions, 370

authority, intention and,
120–121

good habits, 160–161
nonces, 121

creating, 122
form, 123
verifi cation, 123–124

permissions, users, 118–120
server-side Ajax handler,

369–371
segregating plugin options, 168
SELECT

columns, 155
generic results, 155–156
rows, 153–154
variables, 153

selected() function, 70
self-hosted APIs, 269

serial number validation, 134
server-side Ajax handler, 369–371
server variables, sanitization,

142–143
servers, proxy, HTTP API, 248–249
Settings API, 2

benefi ts, 169
defi ning sections, 171–172
defi ning settings, 171–172
fi elds, 179–180
form rendering, 173–174
plugin administration page, 170

adding fi elds, 177–180
plugin management page,

174–176
user interface, 180

registering new settings, 171
sections, 179–180
user input, validation, 172–173
validation errors, feedback,

176–177
settings_fields() function,

173–174
set_transient() function, 181
setup information, 191
SFTP (Secure File Transfer Protocol),

508
sharing, plugins, 7
shortcode

add_shortcode(), 434
add_shortcode() function,

437
network content, 434–440

Shortcode API, 2, 271–272
shortcode_atts() function, 282,

292
shortcodes, 2, 271

[amazon asin=”12345”
]booktitle[/amazon],
275–276

[book], 273
[books title=”xkcd”],

274–275
do_shortcode() function,

282–283
dynamicity, 280
email address obfuscation,

296–297
[gallery], 272
member-only content display,

295–296
nested, 286
recursive, 283
registered by WordPress, 272
registering, 273–277
remove_all shortcodes()

function, 281
remove_shortcode()

function, 281

shortcode_atts() function,
282

simplicity, 277–280
strip shortcodes()

function, 281
time-limited content display,

296
shorthand PHP, 26
Simple Tumblr Backup plugin,

260–261
single quotes, 24
sites, viewing, 426
site_url() function, 17
slideshows, 300
software, free, 482
space usage, 25–26
split licensing, 480
sprintf() PHP function,

placeholders and, 108
SQL injections, protection against,

157–159
SQL statements

coding standards and, 26
dbDelta() function, 194

test run, 196
formatting, $wpdb object, 149

SSH (Secure Shell), 508
storage

API results, 288–289
translation fi les, 115
widget options, 65

strings
echoing, 99–108
identifi er, internal, 133
patterns, sanitization, 134–136
placeholders and, 108
returning, 99–108
text, validation, 132

strip shortcodes() function,
281

strip_tags() PHP function,
66, 71

strtotime() PHP function, 135
stylesheets, 348
submenus, 61–62
submitting plugins to WordPress

.org, 482–484
branding, 490–491
submission, 484–485

promoting, 489–496
readme.txt fi le, 486–488

supporting plugin, 493–494
Subversion repository, WordPress

.org, 485–486
Super admin (Multisite), 457–458
support forums, 503–504
switch_to_blog() function,

431–433, 444
syntax, jQuery, 334–335

sanitization – syntax, jQuery

523

T

tables, 94–95
checking existence, 193
custom, 191–193

accessing, 196
structure update, 193–194

data storage, 191
standard, 191

$tag action hook, 30
tags

HTML, stripping, 138
plugins

Google, 4
Twitter, 4
widget, 4

unused tags plugin, 124–127
taxonomies, 299

album_artist, 321–323
album_genre, 321–323
Category, 318
conditional tags, 327–329
custom, registering, 319–323
Link Category, 318
Nav Menu, 318
plugins, post types, 329–332
Post Tag, 318
post types, 308–309

assigning to, 323–324
posts and, 325–327
retrieving, 324

taxonomy_exists() function,
327

telephone number validation, 134
template_include fi lter hook,

49–50
template_redirect action

hook, 38
temporary options, 2
testimonials, 300
testing, plugin functionality, 10
text strings

mixed, validation, 132–133
validation, 132

TextMate, 508
The Loop, 309–311
the_content() function, 312
the_content fi lter hook, 47–48
the_except() function, 312
themes, plugins, 6
the_permalink() function, 312
the_terms() function, 325
the_title() function, 311
the_title fi lter hook, 48–49
time-limited content display, 296
toggling autoload parameter, 168
tools

translation, 113–114
web sites, 502

top-level menus, 60–61
TortoiseSVN, 485
transactions, HTTP, 238–239
Transients API, 2, 180

expiring options
deleting, 181
retrieving, 181
saving, 181

plugin caching, 181
translation

fi les, 99
MO, 113
PO, 113
POT, 114–115
storage, 115
tools, 113–114

functions, 99–100
__() function, 100
_e() function, 100
esc_attr__() function,

100–101
esc_attr_e(), 101
esc_attr_x(), 103–104
esc_html__(), 101–102
esc_html_e(), 102
esc_html_x(), 104
_ex(), 102–103
_n(), 104–105
_n_noop(), 106–107
_nx(), 105–106
_nx_noop(), 107–108
_x(), 102

plugins, 99
true cron, 386
Twitter, 506

API, 255
output format, 255
tag, 4

Twitter Info plugin, 257–258

U

undefi ned variables, 470
uninstall hook, 21–22
uninstalling

deactivate and, 20
necissity, 20–21
uninstall.php fi le, 21

uninstall.php fi le, 21
unused tags plugin, 124–127
update_blog_option() function,

452
update_option() function,

164–165
update_post_meta() function,

82, 86
update_post_metadata()

function, 316–317

updates, 463–464
development, 505
plugins, 6
post metadata, 316–317

update_user_meta() function,
183

URIs
Author, 14
Plugin, 14

URL paths, 17–18
URLs

endpoints, 417–421
rewriting, 403

Apache web server,
404–405

fl ushing rules, 409–410
plugin, 410–411
shop list, 408–414
WordPress, 405

sanitization, 140–141
database, 141
redirects, 141–142

search engine friendly, 404
user-friendly, 404

user contact methods, disabling,
46–47

user-entered data, sanitizing, 66
user IDs, 186
user input, Settings API, 172–173
user permissions, 118–120
user roles, built-in, 5
users

Multisite, 453–457
per-user settings

metadata
deleting, 184, 185–186
getting, 185
updating, 184–185

plugin creation, 183
user metadata, 183

profi le pages, input fi elds,
186–187

URLs, 404

V

validation
dates, 134
email strings, 136–137
errors, feedback, 176–177
integers, 131–132
mixed text strings, 132–133
need for, 127–128
pure text strings, 132
versus sanitization, 130–131
serial numbers, 134
telephone numbers, 134

variable hooks, 56

tables – variable hooks

524

variables
class, $wpdb object, 159–160
environment, sanitization,

142–143
global, $blog_ID, 429
naming, 23–24
placeholders, 108
query, registering, 409
$return_posts, 435
SELECT, 153–154
server, sanitization, 142–143
undefi ned, 470

verifi cation, nonces, 123–124
version compatibility, 18
Versions repository, 485
videos, 300

W

web sites, tools, 502
WeblogToolsCollection.com, 506
widgets

creating, 63–68
dashboard, 2

creating, 74–75
creating with options,

75–79
network content, 440
options, storage, 65
registering, 69
tag, 4

Widgets API, 2
widgets_init action hook, 64, 440
window.onload, 337
WordCamps, 506
WordPress, plugins and version

compatibility, 18
WordPress chat, 504–505
WordPress Meetups, 506
WordPress Object Cache, 474
WordPress Planet, 505
WordPress UI, 90
WordPress.org

account creation, 484
plugin ideas, 505
repository, 483–484

SVN setup, 485–486
submission, 484–485

branding, 490–491
promoting, 489–496
readme.txt fi le, 486–488

submitting plugins to, 482–484
WP: :parse_request() function,

406
wp-content folder, 427
wp-content/mu-plugins

directory, 8
wp-content/plugins directory, 8
wp-cron.php, 386
wp-load.php, 406
wp_add_dashboard_widget()

function, 74, 76
WP_Ajax_response class, 370–371
wpautop() function, 43
wp_cache_add() function, 475
wp_cache_delete() function, 475
wp_cache_get() function, 475
wp_cache_replace() function, 475
wp_cache_set() function, 475
wp_dashboard_setup action hook,

74
wpdb class, 149
$wpdb->insert() method, 152
$wpdb object, 149

class variables, 159–160
error display, 159
methods

get_row(), 153–154
get_var(), 153
SELECT column, 155
SELECT generic results,

155–156
SELECT row, 153–154
SELECT variable, 153
superiority, 150

query tracking, 159
$wpdb objects, methods, all-in-one,

151–152
$wpdb->update() method, 151–152
WP_DEBUG_LOG, 472
wp_default_scripts() function,

346
wp_dequeue_script() function,

346
WPEngineer.com, 506
wp_enqueue_script() function,

87, 110–111, 341–342

core scripts, 342–343
custom scripts, 343

dependencies, 343–344
version numbers, 344

scripts in footer, 344–345
wp_enqueue_styles() function, 87
wp_get_schedules() function, 383
wp_head action hook, 30, 39
wp_localize_script() function,

110
wpmu_create_blog() function,

446–452
wp_next_scheduled() function,

376, 381
$wp_query object, 406, 407–408
wp_redirect() function, 142
wp_register_script() function,

347–348
wp_remote_get() function, 242
wp_remote_head() function, 242
wp_remote_post() function, 242
wp_remote_retrieve_body()

function, 247
wp_remote_retrieve_header()

function, 247
wp_remote_retrieve_headers()

function, 247
wp_remote_retrieve_response_

code() function, 247
wp_remote_retrieve_response_

message() function, 247
$wp_rewrite object, 406, 407
wp_schedule_event() function,

376
wp_schedule_single_event()

function, 379
wp_unschedule_event()

function, 381
WP_Widget class, 63–64
wrap class, 93
wrappers, noConflict(), 337

X–Y–Z

_x() function, 102
XSS (cross site scripting), 2, 128

zip uploader, plugin installation, 7–8

variables – zip uploader, plugin installation

bindex.indd 524bindex.indd 524 2/7/11 7:15:20 PM2/7/11 7:15:20 PM

	Content
	Professional WordPress® Plugin Development
	CONTENTS
	FOREWORD
	INTRODUCTION
	CHAPTER 1: AN INTRODUCTION TO PLUGINS
	What Is a Plugin?
	How Plugins Interact with WordPress
	When Are Plugins Loaded?

	Available Plugins
	Official Plugin Directory
	Popular Plugin Examples
	Popular Plugin Tags

	Advantages of Plugins
	Not Modifying Core
	Why Reinvent the Wheel
	Separating Plugins and Themes
	Easy Updates
	Easier to Share and Reuse
	Plugin Sandbox
	Plugin Community

	Installing and Managing Plugins
	Installing a Plugin
	Managing Plugins
	Editing Plugins
	Plugin Directories
	Types of Plugins
	Testing Plugin Functionality

	Summary

	CHAPTER 2: PLUGIN FOUNDATION
	Creating a Plugin File
	Naming Your Plugin
	Using a Folder

	Sanity Practices
	Prefix Everything
	File Organization
	Folder Structure

	Header Requirements
	Creating the Header
	Plugin License

	Determining Paths
	Plugin Paths
	Local Paths
	URL Paths

	Activate/Deactivate Functions
	Plugin Activation Function
	Create Default Settings on Activate
	Plugin Deactivation Function
	Deactivate Is Not Uninstall

	Uninstall Methods
	Why Uninstall Is Necessary
	Uninstall.php
	Uninstall Hook

	Coding Standards
	Document Your Code
	Naming Variables, Functions, and Files
	Single and Double Quotes
	Indentation
	Brace Style
	Space Usage
	Shorthand PHP
	SQL Statements

	Plugin Development Checklist
	Summary

	CHAPTER 3: HOOKS
	Actions
	What Is an Action?
	Action Hook Functions
	Commonly Used Action Hooks

	Filters
	What Is a Filter?
	Filter Hook Functions
	Quick Return Functions
	Commonly Used Filter Hooks

	Using Hooks from Within a Class
	Creating Custom Hooks
	Benefits of Creating Custom Hooks
	Custom Action Hook Example
	Custom Filter Hook Example

	How to Find Hooks
	Searching for Hooks in the Core Code
	Variable Hooks
	Hook Reference Lists

	Summary

	CHAPTER 4: INTEGRATING IN WORDPRESS
	Adding Menus and Submenus
	Creating a Top-Level Menu
	Adding a Submenu
	Adding a Menu Item to an Existing Menu

	Creating Widgets
	Creating a Widget
	Advanced Widget
	Creating Dashboard Widgets
	Creating a Dashboard Widget with Options

	Meta Boxes
	Adding a Custom Meta Box
	Saving Meta Box Data
	Advanced Meta Box

	Keeping It Consistent
	Using the WordPress UI
	Headings
	Icons
	Messages
	Buttons
	Links
	Form Fields
	Tables
	Pagination

	Summary

	CHAPTER 5: INTERNATIONALIZATION
	Internationalization and Localization
	Why Internationalize?
	Understanding Internationalization in Professional Work
	Getting Your Plugin Ready for Translation
	Echoing and Returning Strings
	Using Placeholders
	Internationalizing JavaScript

	Creating Translation Files
	The MO and PO Files
	Translation Tools
	How to Create a POT File
	Where to Store Translation Files

	Summary

	CHAPTER 6: PLUGIN SECURITY
	Securing Your Plugin
	What Securing Your Plugin Is
	What Securing Your Plugin Is Not

	User Permissions
	How to Check current_ user_ can()
	Do Not Check Too Early

	Nonces
	Authority Versus Intention
	What Is a Nonce?
	How to Create and Verify Nonces
	Nonces in Ajax Scripts

	Data Validation and Sanitization
	The Need for Data Validation and Sanitization
	Good Practice: Identifying Potentially Tainted Data
	Validating or Sanitizing Input?
	Validating and Sanitizing Cookbook

	Formatting SQL Statements
	The $wpdb Object
	Why wpdb Methods Are Superior
	All-in-One Methods
	Common Methods
	Protecting Queries Against SQL Injections
	Miscellaneous wpdb Methods and Properties

	Security Good Habits
	Summary

	CHAPTER 7: PLUGIN SETTINGS
	The Options API
	Saving Options
	Saving an Array of Options
	Retrieving Options
	Loading an Array of Options
	Deleting Options
	The Autoload Parameter

	The Settings API
	Benefits of the Settings API
	Settings API Functions
	Wrapping It Up: A Complete Plugin Management Page
	Improving Feedback on Validation Errors
	Adding Fields to an Existing Page

	The Transients API
	Saving an Expiring Option
	Retrieving an Expiring Option
	Deleting an Expiring Option
	A Practical Example Using Transients
	Technical Details
	Transient Ideas

	Saving Per-User Settings
	Crafting a Plugin
	User Metadata
	Saving User Metadata
	Updating User Metadata
	Getting User Metadata
	Deleting User Metadata
	Getting a User's ID
	Adding Input Fields to a Profile Page
	BOJ's Admin Lang Plugin
	Per-User Settings: Best Practices

	Storing Data in Custom Tables
	Types of Data
	WordPress' Standard Tables
	Creating a Custom Table
	Updating the Structure of a Custom Table
	dbDelta() Tips for Success
	Accessing Your Custom Table

	Summary

	CHAPTER 8: USERS
	Working with Users
	User Functions
	Creating, Updating, and Deleting Users
	User Data
	User Metadata

	Roles and Capabilities
	What Are Roles and Capabilities?
	Default Roles
	Custom Roles

	Limiting Access
	Checking User Permissions
	Is the User an Admin?
	Allowing Custom Permissions

	Customizing Roles
	Creating a Role
	Deleting a Role
	Adding Capabilities to a Role
	Removing Capabilities from a Role
	A Custom Role and Capability Plugin

	Summary

	CHAPTER 9: HTTP API
	HTTP Requests Crash Course
	What Is an HTTP Request?
	How to Make HTTP Requests in PHP

	WordPress' HTTP Functions
	The wp_remote_Functions
	Advanced Configuration and Tips

	Practice: Reading JSON from a Remote API
	Getting and Reading JSON
	Your Functional Plugin

	Practice: Sending Data to a Remote API
	Formatting Parameters for POST Requests
	Your Functional Plugin

	Practice: Reading Arbitrary Content
	Make Your Own Plugin Repository
	How Plugin Upgrades Work in WordPress
	Polling an Alternative API from a Plugin
	Building the Alternative API
	A Few Words of Caution About Self-Hosted API

	Special Case: Fetching Remote Feeds
	Summary

	CHAPTER 10: THE SHORTCODE API
	Creating Shortcodes
	What Shortcodes Are
	Register Custom Shortcodes

	Shortcode Tips
	Think Simplicity for the User
	Remember the Dynamicity
	Look Under the Hoods
	A "bb code" for Comments Plugin
	Shortcode Nesting Limitations

	Integrating Google Maps
	Accessing the Google Geocoding API
	Storing API Results
	Accessing the Google Maps API

	More Shortcode Quick Ideas
	Display Member-Only Content
	Display Time-Limited Content
	Obfuscate Email Addresses

	Summary

	CHAPTER 11: EXTENDING POSTS: METADATA, CUSTOM POST TYPES, AND TAXONOMIES
	Creating Custom Post Types
	Post Type Possibilities
	Registering a Post Type
	Setting Post Type Labels
	Using Custom Capabilities
	Attaching Existing Taxonomies

	Using Custom Post Types
	Creating a Custom Post Type Loop
	Retrieving Custom Post Type Content
	Checking if a Post Type Exists

	Post Metadata
	Adding Post Metadata
	Retrieving Post Metadata
	Updating Post Metadata
	Deleting Post Metadata

	Creating Custom Taxonomies
	Understanding Taxonomies
	Registering a Custom Taxonomy
	Assigning a Taxonomy to a Post Type

	Using Custom Taxonomies
	Retrieving a Taxonomy
	Using a Taxonomy with Posts
	Taxonomy Conditional Tags

	A Post Type and Taxonomy Plugin
	Summary

	CHAPTER 12: JAVASCRIPT AND AJAX IN WORDPRESS
	jQuery–A Brief Introduction
	Benefits of Using jQuery
	jQuery Crash Course

	Ajax
	What Is Ajax?
	Ajax Best Practices

	Adding JavaScript in WordPress
	A Proper Way to Include Scripts
	Where to Include Scripts
	Adding Scripts Only When Needed
	Dynamic Scripts in WordPress

	Ajax in WordPress
	Ajax in WordPress: Principles
	A Complete Example: Instant "Read More" Links
	Another Example: Frontend Comment Deletion
	Debugging Ajax

	Summary

	CHAPTER 13: CRON
	What Is Cron?
	How Is Cron Executed?

	Scheduling Cron Events
	Scheduling a Recurring Event
	Scheduling a Single Event
	Unscheduling an Event
	Specifying Your Own Cron Intervals
	Viewing Cron Events Scheduled

	True Cron
	Practical Use
	Deleting Post Revisions Weekly
	The Blog Pester Plugin
	The Delete Comments Plugin

	Summary

	CHAPTER 14: THE REWRITE API
	Why Rewrite URLs
	Permalink Principles
	Apache's mod_rewrite
	URL Rewriting in WordPress

	How WordPress Handles Queries
	Overview of the Query Process
	The rewrite Object
	The query Object
	What Plugins Can Do

	Practical Uses
	Rewriting a URL to Create a List of Shops
	Creating a New Permalink Structure and Integrating Non-WordPress Pages
	Adding an Endpoint and Altering Output Format
	Adding a Custom Feed for the Latest Uploaded Images

	Summary

	CHAPTER 15: MULTISITE
	Differences
	WordPress Versus Multisite Network
	Understanding Multisite Terminology
	Advantages of Multisite

	Enabling Multisite in WordPress
	Multisite Functions
	The Power of Blog ID
	Common Functions
	Switching and Restoring Sites
	Network Content Shortcode Examples
	A Network Content Widget Example
	Creating a New Site
	Multisite Site Options
	Users in a Network
	Multisite Super Admin
	Checking the Site Owner
	Network Stats

	Multisite Database Schema
	Multisite-Specific Tables
	Site-Specific Tables

	Summary

	CHAPTER 16: DEBUGGING AND OPTIMIZING
	Supporting Old Versions (Not)
	Keeping Current with WordPress Development
	Deprecated Functions
	Dealing with Obsolete Client Installs

	Debugging
	Enabling Debugging
	Displaying Debug Messages
	Correcting Debug Messages

	Error Logging
	Enabling Logging
	Setting Log File Location
	Understanding the Log File

	Caching
	Saving, Loading, and Deleting Cached Data
	Caching Data Within a Plugin

	Summary

	CHAPTER 17: MARKETING YOUR PLUGIN
	Choosing a License for Your Plugin
	Different Options
	Why It Matters
	Making Money While Using the GPL

	Submitting to WordPress.org
	Creating an Account
	Submitting a Plugin
	Setting Up SVN
	Creating a readme.txt File

	Getting Your Plugin Renowned
	Naming Your Plugin
	Building a Web Site
	Creating a Page for Your Plugin
	Announcing Your Plugin
	Supporting Your Plugins
	Getting Feedback
	Getting Out of the Basement
	Other Promotion Methods

	Summary

	CHAPTER 18: THE DEVELOPER TOOLBOX
	Core as Reference
	Inline Documentation
	Finding Functions
	Common Core Files

	Codex
	Searching the Codex
	Function Reference

	Tool Web Sites
	PHPXref
	Hooks Database

	Community Resources
	Support Forums
	Mailing Lists
	WordPress Chat
	WordPress Development Updates
	WordPress Ideas
	Community News Sites
	Local Events

	Tools
	Browser
	Editor
	Deploying Files with FTP, SFTP, and SSH
	phpMyAdmin

	Summary

	INDEX

